Article

Expression of canine Kdap in normal, hyperplastic and neoplastic epidermis

Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan.
The Veterinary Journal (Impact Factor: 1.76). 09/2008; 180(3):348-55. DOI: 10.1016/j.tvjl.2008.01.006
Source: PubMed

ABSTRACT

Keratinocyte differentiation-associated protein, Kdap, is a recently identified small secretory protein that may act as a soluble regulator for the cornification and/or desquamation of keratinocytes. To clarify the role of Kdap in the terminal differentiation of keratinocytes, detailed in situ localisation of Kdap was studied using canine skin with normal, hyperplastic and neoplastic epidermis. In normal canine trunk skin, Kdap was expressed by granular keratinocytes, with polarity to the apical side of the cells, suggesting that canine Kdap is present in lamellar granules, as in humans. Expression of Kdap was widespread in the spinous layers in hyperplastic epidermis, but was undetectable in squamous cell carcinomas. These findings suggest that Kdap is closely related to the delay of terminal differentiation and/or release of cells in hyperplastic epidermis.

0 Followers
 · 
12 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-small cell lung cancer (NSCLC) presents as a progressive disease spanning precancerous, preinvasive, locally invasive, and metastatic lesions. Identification of biological pathways reflective of these progressive stages, and aberrantly expressed genes associated with these pathways, would conceivably enhance therapeutic approaches to this devastating disease. Through the construction and analysis of SAGE libraries, we have determined transcriptome profiles for preinvasive carcinoma-in-situ (CIS) and invasive squamous cell carcinoma (SCC) of the lung, and compared these with expression profiles generated from both bronchial epithelium, and precancerous metaplastic and dysplastic lesions using Ingenuity Pathway Analysis. Expression of genes associated with epidermal development, and loss of expression of genes associated with mucociliary biology, are predominant features of CIS, largely shared with precancerous lesions. Additionally, expression of genes associated with xenobiotic metabolism/detoxification is a notable feature of CIS, and is largely maintained in invasive cancer. Genes related to tissue fibrosis and acute phase immune response are characteristic of the invasive SCC phenotype. Moreover, the data presented here suggests that tissue remodeling/fibrosis is initiated at the early stages of CIS. Additionally, this study indicates that alteration in copy-number status represents a plausible mechanism for differential gene expression in CIS and invasive SCC. This study is the first report of large-scale expression profiling of CIS of the lung. Unbiased expression profiling of these preinvasive and invasive lesions provides a platform for further investigations into the molecular genetic events relevant to early stages of squamous NSCLC development. Additionally, up-regulated genes detected at extreme differences between CIS and invasive cancer may have potential to serve as biomarkers for early detection.
    Full-text · Article · Feb 2010 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Gram-positive bacterium Staphylococcus intermedius is regarded as the major cause of canine pyoderma, a common skin infection of dogs. However, despite its clinical importance, the population genetic structure of S. intermedius is poorly understood. The current study examined the population genetic structure of S. intermedius using a multilocus DNA sequencing approach. A collection of 99 isolates phenotypically identified as S. intermedius and originating from a broad array of animal hosts in several different countries was investigated. Phylogenetic analysis indicated that the isolates belonged to three distinct species including S. intermedius, staphylococcus pseudintermedius, and Staphylococcus delphini, together referred to as the S. intermedius group (SIG). Importantly, it was discovered that all canine isolates investigated belonged to the S. pseudintermedius phylotype and it was concluded that S. pseudintermedius, not S. intermedius, is the common cause of canine pyoderma. Further, it was revealed that S. delphini is more clinically important than was previously thought. The allelic variation of agrD, which encodes the autoinducing peptide (AIP) of the agr quorum sensing system in staphylococci, was determined for all isolates. Four AIP variants were identified, including three which were present in all three species, suggesting that a common quorum sensing capacity has been conserved despite species differentiation in very different niches. Considerable clonal diversity was revealed within the S. pseudintermedius species, including several methicillin-resistant clones which have evolved by recent acquisition of the mecA gene. Using the sequence diversity identified, a simple diagnostic test was developed based on a PCR-RFLP approach to discriminate S. pseudintermedius from S. intermedius and S. delphini. Having established that S. pseudintermedius is the common canine pyoderma pathogen, this study aimed to investugate key host-pathogen interactions involved in colonisation of its canine host. Bioinformatic analysis of the whole genome sequence of a clinical isolate of S. pseudintermedius (strain ED99) revealed 17 genes encoding predicted LPXTG-containing cell wall-anchored (CWA) surface proteins. A diverse collection of S. pseudintermedius isolates and closely related staphylococcal species was screened for the presence of the genes encodng the novel CWA proteins. The majority of genes were widely distributed among the isolates examined, with nine genes being exclusive to S. pseudintermedius and eight being also present in other members of the SIG. In Gram-positive bacteria, a family of CWA proteins called microbial surgace components recognising adhesive matrix molecules (MSCRAMMs)mediates bacterial adherence to extracellular matrix proteins of the host. Three of the 17 predicted novel CWA proteins, designated SpsD, SpsL and SpsO, were selected for further characterisation of their role in host-pathogen interactions and were cloned and expressed on the surface of the surrogate host Lactococcus lactis. Solid phase adherence assays employing host extracellular matrix proteins and canine corneocytes were performed to identify host extracellular matrix proteins and canine corneocytes were performed to identify host receptors for the putative MSCRAMMs. L. lactis expressing SpsD demonstrated binding to fibronectin, fibrinogen and cytokeratin 10, SpsL mediated binding of L. lactis to fibronectin and canine fibrrinogen, and SpsD and SpsO both mediated L. lactis adherence to canine corneocytes. Additionally, a cell culture assay using a commercially available canine epidermal cell line was developed and the adherence of S. pseudintermedius ED99 and the L. lactis constructs to the cell line was tested. S. pseudintermedius ED99, but none of the MSCRAMM-expressing L. lactis strains, adhered to the canine epidermal cells in vitro, suggesting that receptors for S. pseudintermedius adherence which are present in ex vivo corneocytes are not present in undifferentiated canine epidermal cell line preparations. Take together, the present study provides broad new insights into the classification and evolution of the SIG, and the molecular interaction of S. pseudintermedius with its canine host.
    Preview · Article · Jul 2010
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stratum corneum of epidermis is an essential barrier against the external environment and water loss. This study aimed to develop an organotypic culture model that targets the reconstruction of the stratum corneum using canine keratinocyte-derived CPEK cells. The CPEK cells cultured at the air-liquid interface became stratified and formed a stratum corneum-like layer on stratum spinosum- and stratum granulosum-like layers. The CPEK cells in the stratum granulosum-like layer expressed the cornified cell envelope (CCE)-related proteins loricrin and keratinocyte differentiation-associated protein. Organotypically cultured CPEK cells were considered to form a CCE at the stratum granulosum-like layer, allowing the formation of a stratum corneum-like layer. The organotypic culture of CPEK cells could be useful for studying the barrier function of canine stratum corneum.
    No preview · Article · May 2011 · Veterinary Research Communications