Pharmacotherapy of Acute Lung Injury and Acute Respiratory Distress Syndrome

Department of Surgery, State University of New York (SUNY) at Buffalo, Buffalo, NY 14214, USA.
Current Medicinal Chemistry (Impact Factor: 3.85). 02/2008; 15(19):1911-24. DOI: 10.2174/092986708785132942
Source: PubMed


Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Mortality from ALI/ARDS is substantial, and current therapy primarily emphasizes mechanical ventilation and judicial fluid management plus standard treatment of the initiating insult and any known underlying disease. Current pharmacotherapy for ALI/ARDS is not optimal, and there is a significant need for more effective medicinal chemical agents for use in these severe and lethal lung injury syndromes. To facilitate future chemical-based drug discovery research on new agent development, this paper reviews present pharmacotherapy for ALI/ARDS in the context of biological and biochemical drug activities. The complex lung injury pathophysiology of ALI/ARDS offers an array of possible targets for drug therapy, including inflammation, cell and tissue injury, vascular dysfunction, surfactant dysfunction, and oxidant injury. Added targets for pharmacotherapy outside the lungs may also be present, since multiorgan or systemic pathology is common in ALI/ARDS. The biological and physiological complexity of ALI/ARDS requires the consideration of combined-agent treatments in addition to single-agent therapies. A number of pharmacologic agents have been studied individually in ALI/ARDS, with limited or minimal success in improving survival. However, many of these agents have complementary biological/biochemical activities with the potential for synergy or additivity in combination therapy as discussed in this article.

12 Reads
  • Source
    • "Etiology of ALI may be direct causes, such as pneumonia, aspiration of gastric contents, chemical/inhalation injury, and blunt chest trauma; or indirect causes, such as sepsis, massive blood transfusion, pancreatitis, and burns [2] [3]. Because pharmacological agents have poor benefit in ALI treatment, the mortality rate is still high [4]. This condition induces a systemic response and causes the release of harmful substances that may affect remote organs such as the liver by causing hypoxemia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300-350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI.
    Full-text · Article · Aug 2014 · BioMed Research International
  • Source
    • "The disruption of alveolar epithelial integrity is a major contributor to increased permeability and alveolar flooding with protein-rich edema fluid, a hallmark of ALI/ARDS. However, pharmacological therapies that target the enhancement or restoration of lung epithelial cell functions have not yet been translated to effective clinical treatment options, and innovative therapies are urgently needed [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality, and have no specific therapy. Keratinocyte growth factor (KGF) is a critical factor for pulmonary epithelial repair and acts via the stimulation of epithelial cell proliferation. Mesenchymal stem cells (MSCs) have been proved as good therapeutic vectors. Thus, we hypothesized that MSC-based KGF gene therapy would have beneficial effects on lipopolysaccharide(LPS)-induced lung injury. After two hours of intratracheal LPS administration to induce lung injury, mice received saline, MSCs alone, empty vector-engineered MSCs (MSCs-vec) or KGF-engineered MSCs (MSCs-kgf) via the tail vein. The MSCs-kgf could be detected in the recipient lungs and the level of KGF expression significantly increased in the MSCs-kgf mice. The MSC-mediated administration of KGF not only improved pulmonary microvascular permeability but also mediated a down-regulation of proinflammatory responses (reducing IL-1β and TNF-α) and an up-regulation of anti-inflammatory responses (increasing cytokine IL-10). Furthermore, the total severity scores of lung injury were significantly reduced in the MSCs-kgf group compared with the other three groups. The underlying mechanism of the protective effect of KGF on ALI may be attributed to the promotion of type II lung epithelial cell proliferation and the enhancement of surfactant synthesis. These findings suggest that MSCs-based KGF gene therapy may be a promising strategy for ALI treatment.
    Full-text · Article · Dec 2013 · PLoS ONE
  • Source
    • "Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by increased permeability of the alveolar-capillary barrier, resulting in an influx of protein-rich edematous fluid and a consequent impairment in arterial oxygenation. Mortality remains high in spite of sophisticated intensive care [1] [2] [3] [4] at high cost [5] and improved strategies in prevention and treatments [6] [7]. Thus, there is an urgent need to explore potential novel preventative and therapeutic strategies for patients with, or at high risk of developing, ALI/ARDS. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mortality of acute lung injury and acute respiratory distress syndrome (ALI/ARDS) remains high and efforts for prevention and treatments have shown little improvement over the past decades. The present study investigated the efficacy and mechanism of leukocytapheresis (LCAP) to partially eliminate peripheral neutrophils and attenuate lipopolysaccharide (LPS)-induced lung injury in dogs. A total of 24 healthy male mongrel dogs were enrolled and randomly divided into LPS, LCAP and LCAP-sham groups. All animals were injected with LPS to induce endotoxemia. The serum levels of leucocytes, neutrophil elastase, arterial blood gas, nuclear factor-kappa B (NF-κB) subunit p65 in lung tissues were measured. The histopathology and parenchyma apoptosis of lung tissues were examined. We found that 7, 3, and 7 animals in the LPS, LCAP, and sham-LCAP groups, respectively, developed ALI 36 h after LPS infusion. The levels of NF-κB p65 in lung tissue, neutrophils and elastase in blood, decreased significantly following LCAP. LCAP also alleviated apoptosis, and NF-κB p65 in lung tissues. Collectively, our results show that partial removal of leucocytes from peripheral blood decreases elastase level in serum. This, in turn, attenuates lung injuries and may potentially decrease the incidence of ALI.
    Full-text · Article · Mar 2012 · Mediators of Inflammation
Show more