Article

Ultrafast Spectroscopy and Computational Study of the Photochemistry of Diphenylphosphoryl Azide: Direct Spectroscopic Observation of a Singlet Phosphorylnitrene

Journal of the American Chemical Society (Impact Factor: 12.11). 11/2010; 133(4). DOI: 10.1021/ja909327z

ABSTRACT

The photochemistry of diphenylphosphoryl azide was studied by femtosecond transient absorption spectroscopy, by chemical analysis of light-induced reaction products, and by RI-CC2/TZVP and TD-B3LYP/TZVP computational methods. Theoretical methods predicted two possible mechanisms for singlet diphenylphosphorylnitrene formation from the photoexcited phosphoryl azide. (i) Energy transfer from the (π,π*) singlet excited state, localized on a phenyl ring, to the azide moiety, thereby leading to the formation of the singlet excited azide, which subsequently loses molecular nitrogen to form the singlet diphenylphosphorylnitrene. (ii) Direct irradiation of the azide moiety to form an excited singlet state of the azide, which in turn loses molecular nitrogen to form the singlet diphenylphosphorylnitrene. Two transient species were observed upon ultrafast photolysis (260 nm) of diphenylphosphoryl azide. The first transient absorption, centered at 430 nm (lifetime (τ) 28 ps), was assigned to a (π,π*) singlet S1 excited state localized on a phenyl ring, and the second transient observed at 525 nm (τ 480 ps) was assigned to singlet diphenylphosphorylnitrene. Experimental and computational results obtained from the study of diphenyl phosphoramidate, along with the results obtained with diphenylphosphoryl azide, supported the mechanism of energy transfer from the singlet excited phenyl ring to the azide moiety, followed by nitrogen extrusion to form the singlet phosphorylnitrene. Ultrafast time-resolved studies performed on diphenylphosphoryl azide with the singlet nitrene quencher, tris(trimethylsilyl)silane, confirmed the spectroscopic assignment of singlet diphenylphosphorylnitrene to the 525 nm absorption band.

Download full-text

Full-text

Available from: Shubham Vyas, Nov 20, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    No preview · Article · Jun 2010 · ChemInform
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photochemistry of diphenylphosphoryl azide was studied by femtosecond transient absorption spectroscopy, by chemical analysis of light-induced reaction products, and by RI-CC2/TZVP and TD-B3LYP/TZVP computational methods. Theoretical methods predicted two possible mechanisms for singlet diphenylphosphorylnitrene formation from the photoexcited phosphoryl azide. (i) Energy transfer from the (π,π*) singlet excited state, localized on a phenyl ring, to the azide moiety, thereby leading to the formation of the singlet excited azide, which subsequently loses molecular nitrogen to form the singlet diphenylphosphorylnitrene. (ii) Direct irradiation of the azide moiety to form an excited singlet state of the azide, which in turn loses molecular nitrogen to form the singlet diphenylphosphorylnitrene. Two transient species were observed upon ultrafast photolysis (260 nm) of diphenylphosphoryl azide. The first transient absorption, centered at 430 nm (lifetime (τ) ∼ 28 ps), was assigned to a (π,π*) singlet S(1) excited state localized on a phenyl ring, and the second transient observed at 525 nm (τ ∼ 480 ps) was assigned to singlet diphenylphosphorylnitrene. Experimental and computational results obtained from the study of diphenyl phosphoramidate, along with the results obtained with diphenylphosphoryl azide, supported the mechanism of energy transfer from the singlet excited phenyl ring to the azide moiety, followed by nitrogen extrusion to form the singlet phosphorylnitrene. Ultrafast time-resolved studies performed on diphenylphosphoryl azide with the singlet nitrene quencher, tris(trimethylsilyl)silane, confirmed the spectroscopic assignment of singlet diphenylphosphorylnitrene to the 525 nm absorption band.
    No preview · Article · Feb 2011 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photochemistry of 2-naphthylsulfonyl azide (2-NpSO(2)N(3)) was studied by femtosecond time-resolved infrared (TR-IR) spectroscopy and with quantum chemical calculations. Photolysis of 2-NpSO(2)N(3) with 330 nm light promotes 2-NpSO(2)N(3) to its S(1) state. The S(1) excited state has a prominent azide vibrational band. This is the first direct observation of the S(1) state of a sulfonyl azide, and this vibrational feature allows a mechanistic study of its decay processes. The S(1) state decays to produce the singlet nitrene. Evidence for the formation of the pseudo-Curtius rearrangement product (2-NpNSO(2)) was inconclusive. The singlet sulfonylnitrene (1)(2-NpSO(2)N) is a short-lived species (τ ≈ 700 ± 300 ps in CCl(4)) that decays to the lower-energy and longer-lived triplet nitrene (3)(2-NpSO(2)N). Internal conversion of the S(1) excited state to the ground state S(0) is an efficient deactivation process. Intersystem crossing of the S(1) excited state to the azide triplet state contributes only modestly to deactivation of the S(1) state of 2-NpSO(2)N(3).
    No preview · Article · Apr 2012 · Journal of the American Chemical Society
Show more