MRI measures of temporoparietal regions show differential rates of atrophy during prodromal AD

Dept. of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
Neurology (Impact Factor: 8.29). 10/2008; 71(11):819-25. DOI: 10.1212/01.wnl.0000320055.57329.34
Source: PubMed


MRI studies have demonstrated differential rates of atrophy in the entorhinal cortex and hippocampus during the prodromal phase of Alzheimer disease (AD). The current study was designed to determine whether a broader set of temporoparietal regions show differential rates of atrophy during the evolution of AD.
Sixteen regions of interest (ROIs) were analyzed on MRI scans obtained at baseline and follow-up in 66 subjects comprising three groups: controls = individuals who were cognitively normal at both baseline and follow-up; nonconverters = subjects with mild cognitive impairment (MCI) at both baseline and follow-up; converters had MCI at baseline but had progressed to AD at follow-up.
Annualized percent change was analyzed with multivariate analysis of variance (MANOVA), covaried for age. The MANOVA demonstrated an effect of group (p = 0.004). Post hoc comparisons demonstrated greater rates of atrophy for converters vs nonconverters for six ROIs: hippocampus, entorhinal cortex, temporal pole, middle temporal gyrus, fusiform gyrus, and inferior temporal gyrus. Converters showed differentially greater rates of atrophy than controls in five of the same ROIs (and inferior parietal lobule). Rates of change in clinical status were correlated with the atrophy rates in these regions. Comparisons between controls and nonconverters demonstrated no differences.
These results demonstrate that temporoparietal regions show differential rates of atrophy on MRI during prodromal Alzheimer disease (AD). MRI data correlate with measures of clinical severity and cognitive decline, suggesting the potential of these regions of interest as antemortem markers of prodromal AD.

Full-text preview

Available from:
  • Source
    • "Karow et al. reported a d of 1.94 in a sample of mild AD patients [79], and Fennema-Notestine et al. found a value of 1.62 for the right hippocampus and 1.80 for the left one in the ADNI sample [74]. With respect to MCI, Desikan and colleagues reported effect size calculations by splitting their sample on the basis of progression (converters versus non converters) [80]. In their study, hippocampal volume in converters showed values similar to those reported in AD (d = 1.69) whereas non converters showed a much smaller effect size (d = 0.45). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to characterize the neuropsychological and neuroimaging profiles of mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients, and to study the magnitude of the differences by comparing both outcomes with healthy subjects in a cross-sectional manner. Five hundred and thirty-five subjects (356 cognitively normal adults (CONT), 79 MCI, and 100 AD) were assessed with the NEURONORMA neuropsychological battery. Thirty CONT, 23 MCI, and 23 AD subjects from this sample were included in the neuroimaging substudy. Patients' raw cognitive scores were converted to age and education-adjusted scaled ones (range 2-18) using co-normed reference values. Medians were plotted to examine the cognitive profile. MRIs were processed by means of FreeSurfer. Effect size indices (Cohen's d) were calculated in order to compare the standardized differences between patients and healthy subjects. Graphically, the observed cognitive profiles for MCI and AD groups produced near to parallel lines. Verbal and visual memories were the most impaired domains in both groups, followed by executive functions and linguistic/semantic ones. The largest effect size between AD and cognitively normal subjects was found for the FCSRT (d = 4.05, AD versus CONT), which doubled the value obtained by the best MRI measure, the right hippocampus (d = 1.65, AD versus CONT). Our results support the notion of a continuum in cognitive profile between MCI and AD. Neuropsychological outcomes, in particular the FCSRT, are better than neuroimaging ones at detecting differences among subjects.
    Full-text · Article · Apr 2014 · Journal of Alzheimer's disease: JAD
  • Source
    • "The values of the two hemispheres were averaged to provide a measure of TCortTh across the entire cortex for final analyses. Middle temporal thickness (MTempTh) was also measured because prior research has suggested that the middle temporal lobe is relatively resistant to aging [17] but sensitive to AD [18, 19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Current radiologic diagnosis of normal pressure hydrocephalus (NPH) requires a subjective judgment of whether lateral ventricular enlargement is disproportionate to cerebral atrophy based on visual inspection of brain images. We investigated whether quantitative measurements of lateral ventricular volume and total cortical thickness (a correlate of cerebral atrophy) could be used to more objectively distinguish NPH from normal controls (NC), Alzheimer's (AD), and Parkinson's disease (PD). Volumetric MRIs were obtained prospectively from patients with NPH (n = 5), PD (n = 5), and NC (5). Additional NC (n = 5) and AD patients (n = 10) from the ADNI cohort were examined. Although mean ventricular volume was significantly greater in the NPH group than all others, the range of values overlapped those of the AD group. Individuals with NPH could be better distinguished when ventricular volume and total cortical thickness were considered in combination. This pilot study suggests that volumetric MRI measurements hold promise for improving NPH differential diagnosis.
    Full-text · Article · Jan 2012 · Neurology Research International
  • Source
    • "early in patients with familial Alzheimer's disease (Matsushita et al., 2002; Ridha et al., 2006) as they are in sporadic Alzheimer's disease (Minoshima et al., 1997; Desikan et al., 2008) and mild cognitive impairment (Kemppainen et al., 2007). In sporadic Alzheimer's disease, the earliest 11 C-PiB retention may occur in the retrosplenial cortices, particularly the precuneus (Mintun et al., 2006) although early retention has been noted in the striatum as well as the frontal, parietal, temporal and occipital cortices (Klunk et al., 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: (11)Carbon-Pittsburgh compound B positron emission tomography studies have suggested early and prominent amyloid deposition in the striatum in presenilin 1 mutation carriers. This cross-sectional study examines the (11)Carbon-Pittsburgh compound B positron emission tomography imaging profiles of presymptomatic and mildly affected (mini-mental state examination ≥ 20) carriers of seven presenilin 1 mutations, comparing them with groups of controls and symptomatic sporadic Alzheimer's disease cases. Parametric ratio images representing (11)Carbon-Pittsburgh compound B retention from 60 to 90 min were created using the pons as a reference region and nine regions of interest were studied. We confirmed that increased amyloid load may be detected in presymptomatic presenilin 1 mutation carriers with (11)Carbon-Pittsburgh compound B positron emission tomography and that the pattern of retention is heterogeneous. Comparison of presenilin 1 and sporadic Alzheimer's disease groups revealed significantly greater thalamic retention in the presenilin 1 group and significantly greater frontotemporal retention in the sporadic Alzheimer's disease group. A few individuals with presenilin 1 mutations showed increased cerebellar (11)Carbon-Pittsburgh compound B retention suggesting that this region may not be as suitable a reference region in familial Alzheimer's disease.
    Full-text · Article · Nov 2010 · Brain
Show more