Interleukin-13 Displaying Retargeted Oncolytic Measles Virus Strains Have Significant Activity Against Gliomas With Improved Specificity

Molecular Medicine Department, Mayo Clinic College Of Medicine, Rochester, Minnesota 55905, USA.
Molecular Therapy (Impact Factor: 6.23). 10/2008; 16(9):1556-64. DOI: 10.1038/mt.2008.152
Source: PubMed


The majority of glioblastoma multiforme (GBM) tumors (80%) overexpress interleukin-13 receptor alpha2 (IL-13Ralpha2), but there is no expression of IL-13Ralpha2 in normal brain. Vaccine strains of measles virus have significant antitumor activity against gliomas. We tested the hypothesis that measles virus entry could be retargeted via the IL-13Ralpha2. MV-GFP-H(AA)-IL-13 was generated from the Edmonston-NSe vaccine strain, by displaying human IL-13 at the C-terminus of the H protein, and introducing CD46 and signaling lymphocyte activation molecule (SLAM)-ablating mutations in H. The IL-13 retargeted virus showed significant cytopathic effect (CPE) against IL-13Ralpha2 overexpressing glioma lines, and lack of CPE/viral replication in normal human astrocytes and normal human fibroblasts not expressing IL-13Ralpha2. In vivo treatment of orthotopically implanted GBM12 xenografts demonstrated significant prolongation of survival in mice treated with the retargeted strain (P < 0.0001), and comparable activity between the IL-13R retargeted strain and MV-GFP (P = 0.6377). In contrast to MV-GFP-treated mice, administration of the retargeted strain in the central nervous system of measles replication-permissive Ifnar(ko) CD46 Ge mice resulted in lack of neurotoxicity. Strains of measles virus retargeted against the glioma-specific IL-13Ralpha2 receptor have comparable therapeutic efficacy, and improved specificity as compared with the unmodified measles virus strain MV-GFP in vitro and in vivo.

Download full-text


Available from: Mark A Schroeder, May 19, 2014
  • Source
    • "Subsequent display of measles H and F on the surface of infected cells then initiates fusion between neighboring cells, ultimately resulting in large multinucleated syncytia. Recently, a number of groups have altered the tropism of measles virus via addition of peptides [17], growth factors [18], single chain antibodies (scFv) [19] or cytokines [20] to the carboxyl-terminus of the hemagglutinin protein. The primary application of this technology has been the creation of oncolytic measles viruses, which are capable of specifically recognizing, infecting and killing tumor cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced cell fusion has enabled several important discoveries, including the phenomenon of nuclear reprogramming and may yet be applied as a novel therapy for degenerative diseases. However, existing fusogens lack the efficiency required to enable investigation of the epigenetic modifications underlying nuclear reprogramming and the specificity required for clinical application. Here we present a chimeric measles hemagglutinin, Hα7, which specifically and efficiently mediates the fusion of diverse cell types with skeletal muscle both in vitro and in vivo. When compared directly to polyethylene glycol, Hα7 consistently generated a substantial increase in heterokaryon yield and exhibited insignificant levels of toxicity. Moreover, this increased fusion efficiency enabled detection of chromatin modifications associated with nuclear reprogramming following Hα7-mediated fusion of human fibroblasts and mouse myotubes. Finally, Hα7 was also capable of increasing the contribution of transplanted fibroblasts to skeletal muscle repair in vivo, suggesting that this strategy could be used for therapeutic gene delivery.
    Full-text · Article · Oct 2011 · PLoS ONE
  • Source
    • "Pancreatic tumors were also successfully targeted by IL-13-PE in an animal model of human cancer [15,16]. Thus, IL-13Rα2 is currently being assessed as a cancer therapy in a variety of preclinical and clinical trials [4,17,18] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-13 Receptor α2 (IL-13Rα2) is a tumor-associated antigen and target for cancer therapy. Since IL-13Rα2 is heterogeneously overexpressed in a variety of human cancers, it would be highly desirable to uniformly upregulate IL-13Rα2 expression in tumors for optimal targeting. We examined epigenetic regulation of IL-13Rα2 in a murine model of human pancreatic cancer by Bisulfite-PCR, sequencing for DNA methylation and chromatin immunoprecipitation for histone modification. Reverse transcription-PCR was performed for examining changes in IL-13Rα2 mRNA expression after treatment with histone deacetylase (HDAC) and c-jun inhibitors. In vitro cytotoxicity assays and in vivo testing in animal tumor models were performed to determine whether HDAC inhibitors could enhance anti-tumor effects of IL-13-PE in pancreatic cancer. Mice harboring subcutaneous tumors were treated with HDAC inhibitors systemically and IL-13-PE intratumorally. We found that CpG sites in IL-13Rα2 promoter region were not methylated in all pancreatic cancer cell lines studied including IL-13Rα2-positive and IL-13Rα2-negative cell lines and normal cells. On the other hand, histones at IL-13Rα2 promoter region were highly-acetylated in IL-13Rα2-positive but much less in receptor-negative pancreatic cancer cell lines. When cells were treated with HDAC inhibitors, not only histone acetylation but also IL-13Rα2 expression was dramatically enhanced in receptor-negative pancreatic cancer cells. In contrast, HDAC inhibition did not increase IL-13Rα2 in normal cell lines. In addition, c-jun in IL-13Rα2-positive cells was expressed at higher level than in negative cells. Two types of c-jun inhibitors prevented increase of IL-13Rα2 by HDAC inhibitors. HDAC inhibitors dramatically sensitized cancer cells to immunotoxin in the cytotoxicity assay in vitro and increased IL-13Rα2 in the tumors subcutaneously implanted in the immunodeficient animals but not in normal mice tissues. Combination therapy with HDAC inhibitors and immunotoxin synergistically inhibited growth of not only IL-13Rα2-positive but also IL-13Rα2-negative tumors. We have identified a novel function of histone modification in the regulation of IL-13Rα2 in pancreatic cancer cell lines in vitro and in vivo. HDAC inhibition provides a novel opportunity in designing combinatorial therapeutic approaches not only in combination with IL-13-PE but with other immunotoxins for therapy of pancreatic cancer and other cancers.
    Full-text · Article · Apr 2011 · Journal of Translational Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oncolytic herpes simplex viruses (HSV) hold promise for therapy of glioblastoma multiforme (GBM) resistant to traditional therapies. We examined the ability of genetically engineered HSV to infect and kill cells that express CD133, a putative marker of glioma progenitor cells (GPC), to determine if GPC have an inherent therapeutic resistance to HSV. Expression of CD133 and CD111 (nectin-1), the major entry molecule for HSV, was variable in six human glioma xenografts, at initial disaggregation and after tissue culture. Importantly, both CD133+ and CD133- populations of glioma cells expressed CD111 in similar relative proportions in five xenografts, and CD133+ and CD133- glioma cell subpopulations were equally sensitive to killing in vitro by graded dilutions of wild-type HSV-1(F) or several different gamma(1)34.5-deleted viruses. GPC did not display an inherent resistance to HSV. While CD111 expression was an important factor for determining sensitivity of glioma cells to HSV oncolysis, it was not the only factor. Our findings support the notion that HSV will not be able to effectively enter, infect, and kill cells in tumors that have low CD111 expression (<20%). However, virotherapy with HSV may be very effective against CD111+ GPC resistant to traditional therapies.
    Full-text · Article · Jul 2009 · Journal of Neuro-Oncology
Show more