Development and Application of a Multimodal Contrast Agent for SPECT/CT Hybrid Imaging

Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Bioconjugate Chemistry (Impact Factor: 4.51). 09/2011; 22(9). DOI: 10.1021/bc200162r


Hybrid or multimodality imaging is often applied in order to take advantage of the unique and complementary strengths of individual imaging modalities. This hybrid noninvasive imaging approach can provide critical information about anatomical structure in combination with physiological function or targeted molecular signals. While recent advances in software image fusion techniques and hybrid imaging systems have enabled efficient multimodal imaging, accessing the full potential of this technique requires development of a new toolbox of multimodal contrast agents that enhance the imaging process. Toward that goal, we report the development of a hybrid probe for both single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) imaging that facilitates high-sensitivity SPECT and high spatial resolution CT imaging. In this work, we report the synthesis and evaluation of a novel intravascular, multimodal dendrimer-based contrast agent for use in preclinical SPECT/CT hybrid imaging systems. This multimodal agent offers a long intravascular residence time (t1/2 = 43 min) and sufficient contrast-to-noise for effective serial intravascular and blood pool imaging with both SPECT and CT. The colocalization of the dendritic nuclear and X-ray contrasts offers the potential to facilitate image analysis and quantification by enabling correction for SPECT attenuation and partial volume errors at specified times with the higher resolution anatomic information provided by the circulating CT contrast. This may allow absolute quantification of intramyocardial blood volume and blood flow and may enable the ability to visualize active molecular targeting following clearance from the blood.

Download full-text


Available from: Zhen W Zhuang, Aug 05, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyaluronic acid-ceramide (HACE)-based nanoprobes for magnetic resonance (MR) and optical imaging were developed for cancer diagnosis. Diethylenetriaminepentaacetic dianhydride (DTPA) was conjugated to HACE for the chelation of gadolinium (Gd) as an MR contrast agent. Cy5.5 was also conjugated to the HACE backbone as a near-infrared fluorescence (NIRF) imaging dye. The self-assembled HACE-based nanoprobe, Cy5.5-HACE-DTPA-Gd, exhibited a uniformly distributed particle size and morphological shape. The HACE-based nanoprobe did not induce serious cytotoxicity in U87-MG (low expression of CD44 receptor) and SCC7 (high expression of CD44 receptor) cells. The cellular uptake efficiency of the HACE-based nanoprobe was higher in SCC7 cells than in U87-MG cells, indicating an HA-CD44 receptor interaction. In vitro MR signal enhancement of the HACE-based nanoprobe was confirmed compared with a commercial formulation (Magnevist). Moreover, in vivo MR contrast enhancement of the HACE-based nanoprobe in the tumor region was verified in an SCC7 tumor xenograft mouse model. The tumor targetability of the developed nanoprobe was monitored by an NIRF imaging study, and improved accumulation of the nanoprobe in the tumor region was observed. Therefore, this HACE-based dual-imaging nanoprobe can be used to make a more accurate diagnosis of cancer based on its passive and active tumor targeting strategies.
    Full-text · Article · Jun 2012 · Journal of Controlled Release
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computed tomography (CT) is one of the most widely used clinical imaging modalities. In order to increase the sensitivity of CT, small iodinated compounds are used as injectable contrast agents. However, the iodinated contrast agents are excreted through the kidney and have short circulation times. This rapid renal clearance not only restricts in vivo applications that require long circulation times but also sometimes induces serious adverse effects related to the excretion pathway. In addition, the X-ray attenuation of iodine is not efficient for clinical CT that uses high-energy X-ray. Due to these limitations, nano-sized iodinated CT contrast agents have been developed that can increase the circulation time and decrease the adverse effects. In addition to iodine, nanoparticles based on heavy atoms such as gold, lanthanides, and tantalum are used as more efficient CT contrast agents. In this review, we summarize the recent progresses made in nano-sized CT contrast agents.
    No preview · Article · May 2013 · Advanced Materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: The concept of cancer targeting, which exploits the abundance of specific molecular epitopes on cancer cells, has been proposed as a strategy to enhance the efficacy and specificity of cancer therapy and diagnostics. Although many promising results have been obtained with this approach, the research experience of the last decades demonstrates clearly the challenges that the clinical application of cancer-targeted approaches faces. This can be attributed to both the complexity of targeted probe-cell interactions as well as the multitude of additional factors, which influence the efficacy of the targeting process. The aim of this chapter is to address the key steps involved in the cellular pathway of ligand-functionalized probes for cancer targeting. Special attention is given to nanoparticulate delivery systems as the most commonly exploited formulations for cancer targeting. Their interaction with target cells is initiated by ligand binding to the cell surface receptor, which is frequently followed by endocytosis of ligand-receptor complex and, in the final phase, by lysosomal degradation. All the aforementioned processes are presented in view of the pathophysiological and molecular features of the biological system as well as the physicochemical and biological properties of targeted probes. Importantly, we discuss the implications of these intracellular events for the therapeutic activity and diagnostic capabilities of targeted agents. © 2013 Springer Science+Business Media New York. All rights reserved.
    No preview · Article · Jul 2013
Show more