Evidence of Widespread Hot Plasma in a Nonflaring Coronal Active Region from Hinode/X-Ray Telescope

The Astrophysical Journal (Impact Factor: 5.99). 05/2009; 698(1):756. DOI: 10.1088/0004-637X/698/1/756
Source: arXiv


Nanoflares, short and intense heat pulses within spatially unresolved magnetic strands, are now considered a leading candidate to solve the coronal heating problem. However, the frequent occurrence of nanoflares requires that flare-hot plasma be present in the corona at all times. Its detection has proved elusive until now, in part because the intensities are predicted to be very faint. Here, we report on the analysis of an active region observed with five filters by Hinode/X-Ray Telescope (XRT) in 2006 November. We have used the filter ratio method to derive maps of temperature and emission measure (EM) both in soft and hard ratios. These maps are approximate in that the plasma is assumed to be isothermal along each line of sight. Nonetheless, the hardest available ratio reveals the clear presence of plasma around 10 MK. To obtain more detailed information about the plasma properties, we have performed Monte Carlo simulations assuming a variety of nonisothermal EM distributions along the lines of sight. We find that the observed filter ratios imply bi-modal distributions consisting of a strong cool (log T ~ 6.3 – 6.5) component and a weaker (few percent) and hotter (6.6 < log T < 7.2) component. The data are consistent with bi-modal distributions along all lines of sight, i.e., throughout the active region. We also find that the isothermal temperature inferred from a filter ratio depends sensitively on the precise temperature of the cool component. A slight shift of this component can cause the hot component to be obscured in a hard ratio measurement. Consequently, temperature maps made in hard and soft ratios tend to be anti-correlated. We conclude that this observation supports the presence of widespread nanoflaring activity in the active region.

Download full-text


Available from: Fabio Reale
  • Source
    • "Weber et al. (2005) confirmed that, provided they are flat, i.e. top-hat-shaped, even broad DEMs along the line of sight produce constant TRACE filter ratio values. However, we learn from DEM studies made both with spectrometers and from multi-wideband imagers that the DEM of coronal loops is most probably neither isothermal nor broad and flat, instead peaked with components extending both to low and high temperatures (e.g., Peres et al., 2000; Reale et al., 2009b). The critical point becomes the DEM width and its range of variation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered, and therefore topics such as loop oscillations and flaring loops (except for non-solar ones which provide information on stellar loops) are not specifically addressed here. The observational section discusses loop classification and populations, and then describes the morphology of coronal loops, its relationship with the magnetic field, and the concept of loops as multi-stranded structures. The following part of this section is devoted to the characteristics of the loop plasma and of its thermal structure in particular, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics and flows are illustrated. In the modeling section some basics of loop physics are provided, supplying some fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are distinguished between those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. Then, more specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Finally, a brief discussion about stellar X-ray emitting structures related to coronal loops is included and followed by conclusions and open questions.
    Full-text · Article · Oct 2010 · Living Reviews in Solar Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first part reviews the working mechanisms, capabilities and performance of axion helioscopes, including the achieved results so far. The 2nd part is observationally driven. New simulation results obtained with the Geant4 code reconstruct spectral shape of solar X-ray spectra, and their isotropic emission and lateral size. The derived rst mass of the axion(-like) particles is ~10meV. The axion interaction with magnetic field gradient is a generic theoretical suggestion that could reconcile present limits with relevant solar X-ray activity. A short outlook of the experimentally expanding solar axion field is given. Comment: 31 pages, 18 figures. Aded 1 author, updated references. Accepted for the special issue of NJP on dark matter (July 2009)
    Full-text · Article · Mar 2009 · New Journal of Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compare observations of the non-flaring solar corona made simultaneously with Hinode/XRT and with RHESSI. The analyzed corona is dominated by a single active region on 12 November 2006. The comparison is made on emission measures. We derive emission measure distributions vs temperature of the entire active region from multifilter XRT data. We check the compatibility with the total emission measure values estimated from the flux measured with RHESSI if the emission come from isothermal plasma. We find that RHESSI and XRT data analyses consistently point to the presence of a minor emission measure component peaking at log T ~ 6.8-6.9. The discrepancy between XRT and RHESSI results is within a factor of a few and indicates an acceptable level of cross-consistency. Comment: 12 pages, 3 figures, Letter accepted for publication
    Full-text · Article · Sep 2009 · The Astrophysical Journal
Show more