Hypothesis: Chlamydia trachomatis infection of the female genital tract is controlled by Type 2 immunity

University of Pittsburgh School of Medicine, Department of Pediatrics, Rangos Research Center, 4401 Penn Avenue Pittsburgh, PA 15224, USA.
Medical Hypotheses (Impact Factor: 1.07). 09/2012; 79(6). DOI: 10.1016/j.mehy.2012.07.032
Source: PubMed


Chlamydia trachomatis is an obligate intracellular bacterium sexually transmitted to more than 90 million individuals each year. As this level of infectivity implies, C. trachomatis is a successful human parasite; a success facilitated by its ability to cause asymptomatic infection. Host defense against C. trachomatis in the female genital tract is not well defined, but current dogma suggests infection is controlled largely by T(H)1 immunity. Conversely, it is well established that T(H)2 immunity controls allergens, helminths, and other extracellular pathogens that cause repetitive or persistent T cell stimulation but do not induce the exuberant inflammation that drives T(H)1 and T(H)17 immunity. As C. trachomatis persists in female genital tract epithelial cells but does not elicit over tissue inflammation, we now posit that defense is maintained by Type 2 immune responses that control bacterial growth but minimize immunopathological damage to vital reproductive tract anatomy. Evaluation of this hypothesis may uncover novel mechanisms by which Type 2 immunity can control growth of C. trachomatis and other intracellular pathogens, while confirmation that T(H)2 immunity was selected by evolution to control C. trachomatis infection in the female genital tract will transform current research, now focused on developing vaccines that elicit strong, and therefore potentially tissue destructive, Chlamydia-specific T(H)1 immunity.

Download full-text


Available from: Thomas Cherpes, Apr 30, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While Chlamydia trachomatis infections are frequently asymptomatic, mechanisms that regulate host response to this intracellular Gram-negative bacterium remain undefined. This investigation thus used peripheral blood mononuclear cells and endometrial tissue from women with or without Chlamydia genital tract infection to better define this response. Initial genome-wide microarray analysis revealed highly elevated expression of matrix metalloproteinase 10 and other molecules characteristic of Type 2 immunity (e.g., fibrosis and wound repair) in Chlamydia-infected tissue. This result was corroborated in flow cytometry and immunohistochemistry studies that showed extant upper genital tract Chlamydia infection was associated with increased co-expression of CD200 receptor and CD206 (markers of alternative macrophage activation) by endometrial macrophages as well as increased expression of GATA-3 (the transcription factor regulating TH2 differentiation) by endometrial CD4+ T cells. Also among women with genital tract Chlamydia infection, peripheral CD3+ CD4+ and CD3+ CD4- cells that proliferated in response to ex vivo stimulation with inactivated chlamydial antigen secreted significantly more interleukin (IL)-4 than tumor necrosis factor, interferon-c, or IL-17; findings that repeated in T cells isolated from these same women 1 and 4 months after infection had been eradicated. Our results thus newly reveal that genital infection by an obligate intracellular bacterium induces polarization towards Type 2 immunity, including Chlamydia-specific TH2 development. Based on these findings, we now speculate that Type 2 immunity was selected by evolution as the host response to C. trachomatis in the human female genital tract to control infection and minimize immunopathological damage to vital reproductive structures.
    Full-text · Article · Mar 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon gamma (IFNγ) is a key Th1 cytokine, with a principal role in the immune response against intracellular organisms such as Chlamydia. Along with being responsible for significant morbidity in human populations, Chlamydia is also responsible for wide spread infection and disease in many animal hosts, with reports that many Australian koala subpopulations are endemically infected. An understanding of the role played by IFNγ in koala chlamydial diseases is important for the establishment of better prophylactic and therapeutic approaches against chlamydial infection in this host. A limited number of IFNγ sequences have been published from marsupials and no immune reagents to measure expression have been developed. Through preliminary analysis of the koala transcriptome, we have identified the full coding sequence of the koala IFNγ gene. Transcripts were identified in spleen and lymph node tissue samples. Phylogenetic analysis demonstrated that koala IFNγ is closely related to other marsupial IFNγ sequences and more distantly related to eutherian mammals. To begin to characterise the role of this important cytokine in the koala's response to chlamydial infection, we developed a quantitative real time PCR assay and applied it to a small cohort of koalas with and without active chlamydial disease, revealing significant differences in expression patterns between the groups. Description of the IFNγ sequence from the koala will not only assist in understanding this species' response to its most important pathogen but will also provide further insight into the evolution of the marsupial immune system.
    No preview · Article · Jun 2013 · Gene
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia trachomatis is the most common sexually transmitted bacterial infection worldwide. The impact of this pathogen on human reproduction has intensified research efforts to better understand chlamydial infection and pathogenesis. Whilst there are animal models available that mimic the many aspects of human chlamydial infection, the mouse is regarded as the most practical and widely used of the models. Studies in mice have greatly contributed to our understanding of the host-pathogen interaction and provided an excellent medium for evaluating vaccines. Here we explore the advantages and disadvantages of all animal models of chlamydial genital tract infection, with a focus on the murine model and what we have learnt from it so far.
    No preview · Article · Oct 2013 · Current Molecular Medicine
Show more