Deficiency of the Promyelocytic Leukemia Protein Fosters Hepatitis C-Associated Hepatocarcinogenesis in Mice

Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany
PLoS ONE (Impact Factor: 3.23). 09/2012; 7(9):e44474. DOI: 10.1371/journal.pone.0044474
Source: PubMed


Overwhelming lines of epidemiological evidence have indicated that persistent infection with hepatitis C virus (HCV) is a major risk for the development of hepatocellular carcinoma (HCC). We have recently shown that HCV core protein mediates functional inactivation of the promyelocytic leukemia (PML) tumor suppressor pathway. However, the role of PML in HCC development yet remains unclear. To clarify the function of PML in liver carcinogenesis and HCV-associated pathogenesis we crossed PML-deficient mice with HCV transgene (HCV-Tg) expressing mice and treated the resulting animals with DEN/Phenobarbital, an established protocol for liver carcinogenesis. Seven months after treatment, livers were examined macroscopically and histologically. Genetic depletion of the tumor suppressor PML coincided with an increase in hepatocyte proliferation, resulting in development of multiple dysplastic nodules in 100% of the PML-deficient livers and of HCCs in 53%, establishing a tumor suppressive function of PML in the liver. In animals expressing the HCV-transgene in PML-deficient background, HCC development occurred even in 73%, while only 7% of their wildtype littermates developed HCC. The neoplastic nature of the tumors was confirmed by histology and expression of the HCC marker glutamine synthetase. Several pro- and antiapoptotic factors were tested for differential expression and liver carcinogenesis was associated with impaired expression of the proapoptotic molecule TRAIL in PML-deficient mice. In conclusion, this study provides first in vivo evidence that the tumor suppressor PML acts as an important barrier in liver carcinogenesis and HCV-dependent liver pathology.

Download full-text


Available from: Anna Carbow, Jul 10, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Successful escape from immune response characterises chronic hepatitis C virus (HCV) infection, which results in persistence of infection in about 80% of the patients. The deleterious consequences are cirrhosis and hepatocellular carcinoma. HCV accounts the most frequent cause for hepatocellular carcinoma (HCC) and liver transplantation (LT) in the western world. The underlying molecular mechanisms how HCV promotes tumor development are largely unknown. There is some in vitro and in vivo evidence that HCV interferes with the tumor suppressor PML and may thereby importantly contribute to the HCV-associated pathogenesis with respect to the development of HCC. The tumor suppressor protein "promyelocytic leukemia" (PML) has been implicated in the regulation of important cellular processes like differentiation and apoptosis. In cancer biology, PML and its associated nuclear bodies (NBs) have initially attracted intense interest due to its role in the pathogenesis of acute promyelocytic leukemia (APL). More recently, loss of PML has been implicated in human cancers of various histologic origins. Moreover, number and intensity of PML-NBs increase in response to interferons (IFNs) and there is evidence that PML-NBs may represent preferential targets in viral infections. Thus, PML could not only play a role in the mechanisms of the antiviral action of IFNs but may also be involved in a direct oncogenic effect of the HCV on hepatocytes. This review aims to summarise current knowledge about HCV-related liver carcinogenesis and to discuss a potential role of the nuclear body protein PML for this this hard-to-treat cancer.
    Full-text · Article · Sep 2014 · World Journal of Gastroenterology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Various immunohistochemical panels are used as aids to distinguish between primary hepatocellular malignancies and metastatic tumors and between benign lesions and carcinomas. We compared the immunohistochemical spectrum of hepatocellular lesions in mice with that of human hepatocellular carcinoma (HCC). Specifically, we compared the staining parameters of 128 murine foci of cellular alteration (FCA) and tumors (adenoma and HCC) from archival tissue blocks of 3 transgenic mouse models (LFABP-cyclin D1, Alb1-TGFβ1, and LFABP-cyclin D1 × Alb1-TGFβ1) with those of archival human HCC (n = 5). Antibodies were chosen according to their published performance and characterization in human hepatocellular tumor diagnosis and included: arginase 1 (Arg1), β-catenin, glutamine synthetase (GS), glypican 3, hepatocyte paraffin 1 (HepPar1), and cytokeratin 19 (CK19). GS was the single best immunostain for identifying hepatocellular tumors in mice, with 100% positive staining. Data showed a trend toward loss of normal function (staining) with Arg1, with a higher percentage of positive staining in FCA than in adenomas and HCC. All FCA lacked murine β-catenin nuclear translocation, which was present in 2 of the 7 adenomas and 22 of the 96 HCC tested. HepPar1 staining was lower than anticipated, except in trabecular HCC (16 of 22 samples were positive). Glyp3 stained very lightly, and only scattered CK19-positive cells were noted (4 of 44 cases of mouse trabecular HCC). Thus, GS appears to be the most useful marker for identifying neoplasia in the transgenic mouse models we tested and should be included in immunohistochemistry assessing hepatocellular neoplasia development.
    No preview · Article · Oct 2015 · Comparative medicine