ArticlePDF Available

Nature and Nurture in Personality Development: The Case of Neuroticism and Extraversion

Authors:

Abstract and Figures

The stability of interindividual differences (i.e., rank-order continuity) in personality traits tends to increase with age until it plateaus in middle adulthood and finally decreases in old age. Rank-order continuity also tends to decrease as the time intervals between occasions of personality assessment increase, irrespective of age. These patterns show that personality development is a lifelong process. Yet the sources of these patterns are unknown. Theories suggest that personality continuity and change may result from environmentally mediated processes of identity development due to age-graded social roles and individual life experiences, but also from biological maturation. Genetically informative longitudinal studies across different age cohorts allow a differentiated picture of genetic and environmental sources. In this article, I give a short overview of the genetic and environmental contributions to rank-order continuity and change in neuroticism and extraversion. Both genetic and environmental factors contribute to personality continuity and change, but genetic factors affect rank-order change only in younger decades of life, whereas environmental influences appear to represent a lifelong source of interindividual differences in personality development.
Content may be subject to copyright.
Current Directions in Psychological
Science
XX(X) 1 –7
© The Author(s) 2012
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0963721412452557
http://cdps.sagepub.com
The science of behavioral genetics, largely through twin
studies, has made a persuasive case that much of our
identity is stamped on us from conception; to that
extent, our lives seem to be pre-chosen—all we have to
do is live out the script that is written in our genes . . .
Still, it’s confounding to imagine . . . any gardener
knows that rather small variations of water and fertilizer
and soil acidity affect the development of far less com-
plex organisms—are humans so indifferent to the envi-
ronment they are planted in?
Wright, 1997, pp. 143-148
Personality traits are commonly defined as broad, disposi-
tional, and comparative features of psychological individual-
ity. The most prominent and extensively studied bipolar
personality-trait continua are neuroticism–emotional stability
and extraversion–introversion. Compared with more emotion-
ally stable persons, individuals who are high on neuroticism
are more likely to feel anxious, depressed, and guilty. They are
more often self-conscious and are more likely to experience
situations as threatening and stressful. Therefore, not surpris-
ingly, neuroticism is linked to several psychopathological
symptoms (Weinstock & Whisman, 2006). Individuals high on
extraversion are more active, gregarious, and assertive than
are introverts, who prefer to engage in fewer social activities
and to maintain fewer social contacts. Extraverts also engage
in more social and enterprising leisure-time and job-related
interests (Kandler, Bleidorn, Riemann, Angleitner, & Spinath,
2011).
Neuroticism and extraversion, or roughly parallel trait con-
ceptions, are often listed as the first two personality dimen-
sions in models of personality or temperament (see Bouchard
& Loehlin, 2001). Although facets of these traits, such as anxi-
ety (a facet of neuroticism) and activity (a facet of extraver-
sion), are already observable within the first years of life, a
clear structure of personality traits does not begin to appear
before the preteen period (McAdams & Olson, 2010).
Personality traits are enduring features accounting for con-
sistencies in behavior, thoughts, and feelings across situations
and occasions. Longitudinal studies of personality traits have
provided robust evidence that the stability of interindividual
Corresponding Author:
Christian Kandler, Department of Psychology, Bielefeld University,
Universitätsstraße 25, D-33615 Bielefeld, Germany
E-mail: christian.kandler@uni-bielefeld.de
Nature and Nurture in Personality
Development: The Case of Neuroticism
and Extraversion
Christian Kandler
Bielefeld University
Abstract
The stability of interindividual differences (i.e., rank-order continuity) in personality traits tends to increase with age until
it plateaus in middle adulthood and finally decreases in old age. Rank-order continuity also tends to decrease as the time
intervals between occasions of personality assessment increase, irrespective of age. These patterns show that personality
development is a lifelong process. Yet the sources of these patterns are unknown. Theories suggest that personality continuity
and change may result from environmentally mediated processes of identity development due to age-graded social roles and
individual life experiences, but also from biological maturation. Genetically informative longitudinal studies across different
age cohorts allow a differentiated picture of genetic and environmental sources. In this article, I give a short overview of the
genetic and environmental contributions to rank-order continuity and change in neuroticism and extraversion. Both genetic
and environmental factors contribute to personality continuity and change, but genetic factors affect rank-order change
only in younger decades of life, whereas environmental influences appear to represent a lifelong source of interindividual
differences in personality development.
Keywords
genetic continuity, environmental continuity, heritability, neuroticism, extraversion
2 Kandler
differences over time (referred to hereafter as rank-order con-
tinuity) increases with age. In other words, a person’s specific
position on a personality-dimension continuum relative to the
positions of other people stabilizes with age. Stability coeffi-
cients (i.e., indices of rank-order continuity between occasions
of personality assessment; these coefficients can vary from 0,
no continuity, to 1, perfect continuity), which are low in child-
hood (approximately .30), rise across adolescence and young
adulthood, reaching a plateau (approximately .70) between the
ages of 40 and 70 (Roberts & DelVecchio, 2000; Terracciano,
Costa, & McCrae, 2006). In old age, stability coefficients
appear to decay (Lucas & Donnellan, 2011; Specht, Egloff, &
Schmukle, 2011). Irrespective of the age group studied, stabil-
ity coefficients decline as the time intervals between measure-
ments of personality traits get longer (Fraley & Roberts, 2005).
These patterns of stability and instability in individual ranks
on personality dimensions point to the fact that personality
development is a lifelong individual process. Although these
patterns of rank-order continuity in personality are well
known, their sources remain a matter of controversy.
McCrae and his colleagues (2000) formulated a theory of
biological maturation (McCrae & Costa, 2008). According to
this perspective, personality traits are stable, genetically (or at
least biologically) anchored basic tendencies of thoughts, feel-
ings, and behavior. Deviations from perfect continuity should
be due to short-term environmentally induced fluctuations, but
also to systematic and random measurement error. In fact, con-
trolling for artifacts and occasion-specific effects results in
higher heritability estimates (i.e., estimates of the degree to
which relative differences among individuals are due to
genetic factors) and larger stability coefficients (Kandler et al.,
2010). Furthermore, similar mean-level trends (i.e., trait
change over time averaged across individuals in a sample or
population) for neuroticism and for extraversion have been
found across different nations and cultures (McCrae et al.,
1999, 2000). Neuroticism tends to decrease with age, whereas
extraversion tends to be stable. Individual deviations from
the mean-level trend (i.e., interindividual differences in intra-
individual change) in neuroticism have been found to be
genetically influenced (Bleidorn, Kandler, Riemann, Angleit-
ner, & Spinath, 2009). These results support the hypothesis
that genetically programmed maturation is a propulsive mech-
anism of personality development. Consequently, the increase
in rank-order continuity of personality from childhood to
adulthood may result from individual differences in biological
maturation, and the decrease in such continuity in older age
may be explained by individual differences in biological
degeneration.
Other researchers have formulated different perspectives,
attributing changes in personality to environmental sources,
such as individual requirements in social roles (e.g., worker,
spouse, parent) and related investments (Roberts & Wood,
2006), normative life transitions (e.g., departure from one’s
parental home, the completion of school or an apprenticeship,
retirement), and individual life events that result in major
changes of individuals’ circumstances (e.g., accidents, the
birth of one’s own child, marriage). In other words, personal-
ity development and change are primarily attributable to age-
graded social roles and related experiences (Roberts, Wood, &
Caspi, 2008). Since the average direction of personality
change (i.e., mean-level change in a population) is often posi-
tive with respect to social functionality (e.g., people become
more emotionally stable with age), personality development is
considered to be a process leading to social maturity (Roberts
& Mroczek, 2008). From this perspective, the lower stability
coefficients in younger ages compared with coefficients in
middle adulthood are due to interindividual differences in the
life transitions and role transfers that typically occur during
the younger period of life, such as the completion of an appren-
ticeship and beginning of a job, departure from one’s parental
home, marriage, and new parenthood (Arnett, 2000). In fact,
this period of life is strongly shaped by individually different
developmental courses that are attributable to interindividual
differences in level and duration of education, family forma-
tion, and economic security (McAdams & Olson, 2010).
Social roles and contexts stabilize in midlife. They change
again in old age until social adjustment breaks down in
advanced old age. Consequently, the increase in rank-order
continuity of personality traits from adolescence to adulthood,
the plateau in middle adulthood, and the decrease of continuity
in older age may result from interindividual differences in sta-
bilizing, maintaining, and destabilizing one’s personal identity
in life.
On the basis of these theoretical considerations, I suggest
an integrative perspective. That is, both genetic and environ-
mental influences may explain personality development, at
least in the case of the rank-order continuity of personality
traits, and at least in the case of neuroticism and extraversion.
Longitudinal behavioral genetics studies (e.g., longitudinal
twin or adoption studies) on different age cohorts have allowed
for deeper insight. In the following sections, I briefly review
und discuss the results from these studies with respect to the
patterns of genetic and environmental effects on rank-order
continuity in neuroticism and extraversion.
The Role of Genetic Factors in Personality
Continuity and Change
Using genetically informative designs, the interindividual dif-
ferences in trait scores that are due to genetic differences (i.e.,
heritability) and to environmental influences can be disentan-
gled. Genetically informative longitudinal designs allow a dis-
entanglement of genetic and environmental components on
each of the measurement occasions, as well as the calculation
of the level of continuity of each of these components (i.e.,
genetic and environmental continuity).
It has been consistently shown that genetic continuity is far
from perfect (i.e., stability coefficients are consistently less
than 1) during childhood and adolescence (De Fruyt et al.,
2006; Gillespie, Evans, Wright, & Martin, 2004; Spengler,
Nature and Nurture of Personality Development 3
Gottschling, & Spinath, 2012). That is, across childhood and
adolescence, new genetic factors emerge that contribute to
interindividual differences and rank-order changes in person-
ality. Like rank-order continuity, genetic continuity tends to
increase across adolescence and young adulthood (Hopwood
et al., 2011; Viken, Rose, Kaprio, & Koskenvuo, 1994) until it
reaches almost perfect stability in middle and late adulthood
(W. Johnson, McGue, & Krueger, 2005; Pedersen, 1993; Read,
Vogler, Pedersen, & Johansson, 2006).
This pattern of genetic continuity has been found for neu-
roticism and extraversion or related variables (see green lines
in Fig. 1 for neuroticism and in Fig. 2 for extraversion). There-
fore, the steady increase in observable rank-order continuity
from childhood to adulthood can be accounted for by stabiliz-
ing interindividual genetic differences. The relatively high sta-
bility of interindividual personality differences in middle
adulthood is accompanied by stability in genetic differences.
In other words, rank-order continuity in neuroticism and extra-
version can be explained by interindividual differences in
genetically influenced maturation.
The Role of Environmental Factors in
Personality Continuity and Change
Stable genetic differences among individuals after age 40,
however, cannot account for the decay of stability coefficients
in older age. Therefore, nongenetic factors may also contribute
to rank-order continuity. Across a broad spectrum of geneti-
cally informative studies, A. M. Johnson, Vernon, and Feiler
(2008) found that the primary nongenetic sources of interindi-
vidual differences in neuroticism and extraversion are specific
to individuals (i.e., not shared by family members reared
together). These effects are known as nonshared environmen-
tal effects. From a behavioral genetics perspective, “environ-
mental” effects include physiologically and biochemically
mediated effects, such as environmentally activated epigenetic
influences. Nonshared environmental factors show different
degrees of stability (i.e., environmental continuity) with
respect to the age studied.
Studying twins between the ages of 12 and 16, Gillespie
et al. (2004) found rather low coefficients for environmental
continuity for both extraversion (.17 for females and .18
for males) and neuroticism (.12 for males and .36 for females).
Hopwood and his colleagues (2011) studied the transition
from adolescence to adulthood (age 17 to 24). The researchers
found environmental-continuity coefficients of .36 for nega-
tive emotionality (neuroticism), .37 for communal positive
emotionality, and .39 for agentic positive emotionality (the
latter two traits can be seen as facets of extraversion). They
also investigated rank-order continuity between the ages of
24 and 29. For this interval, they found higher environmental
continuity, with coefficients ranging from .56 to .60. For
.2
.3
.4
.5
.6
.7
.8
.9
1.0
51015202530354045505560657075808
59
0
Age
Stability Coefficient
Fig. 1. Genetic continuity (depicted by the green line and data points) and environmental
continuity (depicted by the red line and data points) of interindividual differences in neuroticism
(or negative emotionality) as a function of age. Higher stabilit y coefficients (i.e., indices of
continuity between assessments) indicate greater stability over time. The stability coef ficients
shown are based on the results of genetically informative longitudinal studies (weighted by sample
sizes) : Bratko and Butkovic (2007) , De Fruyt et al. ( 2006), Gillespie, Evans, Wright , and Martin
(2004) , Hopwood et al. (2011), W. Johnson, McGue , and Krueger (2005), Kandler et al. (2010),
McGue, Bacon, and Lykken (1993) , Pedersen (1993), Read, Vogler, Pedersen, and Johansson
(2006), Spengler, Gottschling, and Spinath (2012), Viken, Rose, Kaprio, and Koskenvuo (1994),
and Wray, Birley, Sullivan, Visscher, and Martin ( 2007 ). Across studies and sample cohorts,
intervals between assessments ranged between 2 and 10 years (M = 5.15 years).
4 Kandler
middle adulthood, W. Johnson and colleagues (2005) reported
5-year environmental-continuity coefficients over .70. How-
ever, other studies have indicated that environmental continu-
ity decreases in later adulthood (Pedersen & Reynolds, 1998;
Read et al., 2006).
These findings and results from other genetically informa-
tive studies (see red lines in Figs. 1 and 2) point to the fact that
changing levels of rank-order continuity in neuroticism and
extraversion are also attributable to changing levels of envi-
ronmental continuity across the life span. Moreover, the
decrease in rank-order continuity in older age appears to be
exclusively due to a decline in the stability of environmental
factors. Therefore, interindividual differences in experiences
of major life transitions or major life events (whether tempo-
ral, quantitative, or qualitative) may contribute to personality
change and, thus, to personality development. Environmental
contributions to change in interindividual ranks may occur
across the entire life span, but they are more pronounced in
younger ages (because of events such as leaving one’s parental
home, starting a job, and forming a new family) and older ages
(because of events such as retirement, illness, death of spouses
or friends). Because “environmental” factors also include bio-
logically mediated effects, the declining rank-order continuity,
especially in later adulthood, might be due to biological causes
(e.g., multi-infarct dementia).
The Interplay of Genetic and
Environmental Factors
As life narratives and memories cumulate across the life span,
effects of life experiences may cumulate, too. Thus, environ-
mental effects on interindividual differences in neuroticism
and extraversion may cumulate with age, leading to an increase
in environmental variance (McCartney, Harris, & Bernieri,
1990). If interindividual differences due to environmental
effects increase with age, stable interindividual differences
accounted for by genetic effects should proportionally
decrease. Consequently, heritability estimates for personality
traits should decrease with age.
Most genetically informative studies that have assessed
heritability estimates for different age cohorts (e.g., Loehlin &
Martin, 2001) have not found significant differences between
age groups. However, other studies that have combined cross-
sectional data (from different age cohorts) and longitudinal
data have suggested that heritability estimates decrease with
age (Kandler et al., 2010; Viken et al., 1994). A meta-analytic
review of fifteen genetically informative studies on different
age groups showed that the level of heritability of neuroticism
and extraversion appears to depend on the age studied (see
Fig. 3). Heritability of extraversion tends to increase until peo-
ple are in their early 40s, but then it declines continuously. For
.2
.3
.4
.5
.6
.7
.8
.9
1.0
51015202530354045505560657075808
59
0
Age
Stability Coefficient
Fig. 2. Genet ic continuit y (depicte d by the green line a nd data point s) and environm ental cont inuity
(depicted by the red line and data points) of interindividual differences in extraversion (or positive
emotionality) as a function of age. Higher stability coefficients (i.e., indices of continuity bet ween
assessments) indicate greater stability over time. The stability coefficients shown are based on
the results of genetically informative longitudinal studies (weighted by sample sizes): Bratko and
Butkovic (2007), De Fruyt et al. (2006), Gillespie, Evans, Wright, and Martin (2004 ), Hopwood
et al. (2011), W. Johnson, McGue , and Krueger (2005), Kandler et al. (2010), McGue, Bacon,
and Lykken (1993), Pedersen (1993), Read, Vogler, Pedersen, and Johansson (2006) , Spengler,
Gottschling, and Spinath (2012), and Viken, Rose, Kaprio, and Koskenvuo (1994). Across studies
and sample cohor ts, intervals between assessments ranged between 2 and 10 years (M = 4.88
years).
Nature and Nurture of Personality Development 5
neuroticism, heritability progressively decreases after people
enter adulthood.
The changing importance of genetic contributions to inter-
individual differences in neuroticism and extraversion with
age differs from the pattern observed with regard to cognitive
abilities. For cognitive abilities, heritability continuously
increases with age (W. Johnson, 2010). One reason for this
distinction may be that genes and environmental effects dif-
ferentially contribute to how a person typically acts (i.e., his or
her temperament or narrow-sense personality) and how capa-
ble a person is (i.e., his or her abilities or skills).
An increase in the level of personality traits’ heritability
may reflect the increasing importance of active and reactive
gene-environment correlations. People actively select, create,
and change their environments (e.g., by changing their friends,
residences, or jobs) or evoke social reactions that match their
genetically predisposed traits. Environments and social reac-
tions, in turn, may affect personality traits. For example, indi-
viduals who are genetically predisposed to be more extraverted
may perceive life events as more controllable and positive;
experiencing life events as controllable and positive, in turn,
may augment such people’s levels of extraversion (Kandler,
Bleidorn, Riemann, Angleitner, & Spinath, 2012). That is,
genetic influences may partly drive the environmental effects
accounting for the increasing heritability. The processes
involved in these gene-environment correlations may be pro-
pulsive mechanisms of the development of cognitive abilities
across the life span and the development of extraversion in the
first decades of life.
The increasing heritability of extraversion until age 30 and
the cumulatively decreasing heritability of neuroticism and
extraversion after age 30 may accompany midlife tipping
points. For example, young adults often try to expand the self
and gain new information—they actively try to change their
environments to match their goal pursuits; by contrast, older
adults more often try to stabilize and protect the quality of
their lives and ongoing relationships—they change the self to
fit the environment (see McAdams & Olson, 2010, for a
review). Consequently, genetic and environmental effects do
not act separately; rather, they interact in complex ways that
account for the development of personality traits, and the con-
tribution of life experiences to personality development cumu-
lates with age.
Conclusion
I hope that this short review will open the door for further
research identifying the mechanisms of the gene-environment
.05
.15
.25
.35
.45
.55
.65
.75
51015202530354045505560657075808
59
0
Age
Heritability Estimate
Fig. 3. Heritability estimates (the proportion of interindividual differences accounted for by
genetic differences) for extraversion (depicted by the blue line and data points) and neuroticism
(depicted by the orange line and data points) as a func tion of age. The heritability estimates shown
are based on the results of genetically informative longitudinal and age-cohort studies (weighted
by sample size): Bratko and Butkovic (20 07), De Fruyt et al. (2006 ), Gillespie , Evans, Wright, and
Martin (20 04), Hopwood et al. (2011), W. Johnson, McGue, and Krueger (2005), Kandler et al.
(2010), Loehlin and Mar tin (2001), McGue, Bacon, and Lykken (1993), Pedersen and Reynolds
(1998), Read, Vogler, Pedersen, and Johansson (20 06) , Rettew et al. (2006 ), Ret tew, Rebollo-
Mesa, Hudziak, Willemsen, and Boomsma (20 08 ), Spengler, Gottschling, and Spinath ( 2012),
Viken, Rose, Kaprio, and Koskenvuo (1994), and Wray et al. (2007).
6 Kandler
interplay in personality development and also focusing on the
patterns and sources of other personality traits (e.g., openness,
agreeableness, and conscientiousness). More genetically and
environmentally informative research is sorely needed. At this
point, we know that genetic factors stabilize with age, leading
to an increase in rank-order continuity of neuroticism and
extraversion and to personality formation across childhood,
adolescence, and young adulthood. Environmental sources
contribute to this increasing continuity but also to decreasing
continuity in old age. Moreover, environmental influences
appear to cumulate across the life span, leading to a decline of
the genetic contribution to variance in neuroticism and extra-
version with age, a pattern pointing to lifelong changes in per-
sonality due to environmental influences. We develop into the
people we are predisposed to become because of our genetic
makeup, but to a large degree, the development of or changes
in our personality will be formed by the environment.
Recommended Reading
Bouchard, T. J., & Loehlin, J. C. (2001). (See References). A com-
prehensive review of research on personality traits and related
variables from a behavioral genetics perspective.
Fraley, C., & Roberts, B.W. (2005). (See References). An compre-
hensive work on patterns of continuity described as mathematical
models.
McAdams, D. P., & Olson, B. D. (2010). (See References). A clearly
written, user-friendly, and empirically founded theoretical per-
spective on personality development of different levels of per-
sonality elements, such as traits, motives, and narratives.
McCrae, R. R., & Costa, P. T. (2008). (See References). A compre-
hensive overview of research and theory on personality traits as
biologically anchored basic tendencies.
Wright, L. (1997). (See References). An interesting and reader-
friendly book on the history of twin studies and the secrets of
our identity.
Declaration of Conflicting Interests
The authors declared that they had no conflicts of interest with
respect to their authorship or the publication of this article.
References
Arnett, J. J. (2000). Emerging adulthood: A theory of development
from the late teens through the twenties. American Psychologist,
55, 469–480.
Bleidorn, W., Kandler, C., Riemann, R., Angleitner, A., & Spinath,
F. (2009). Patterns and sources of adult personality development:
Growth curve analyses of the NEO-PI-R scales in a longitudinal
twin study. Journal of Personality and Social Psychology, 97,
142–155.
Bouchard, T. J., & Loehlin, J. C. (2001). Genes, evolution, and per-
sonality. Behavior Genetics, 31, 243–273.
Bratko, D., & Butkovic, A. (2007). Stability and genetic and environ-
mental effects from adolescence to young adulthood: Results of
Croatian longitudinal twin study of personality. Twin Research
and Human Genetics, 10, 151–157.
De Fruyt, F., Bartels, M., Van Leeuwen, K. G., De Clercq, B.,
Decuyper, M., & Mervielde, I. (2006). Five types of personality
continuity in childhood and adolescence. Journal of Personality
and Social Psychology, 91, 538–552.
Fraley, C., & Roberts, B. W. (2005). Patterns of continuity: A dynamic
model for conceptualizing the stability of individual differences
in psychological constructs across the life course. Psychological
Review, 112, 60–74.
Gillespie, N. A., Evans, D. E., Wright, M. M., & Martin, N. G. (2004).
Genetic simplex modeling of Eysenck’s dimensions of person-
ality in a sample of young Australian twins. Twin Research, 7,
637–648.
Hopwood, C. J., Donnellan, M. B., Krueger, R. F., McGue, M., Iacono,
W. G., Blonigen, D. M., & Burt, S. A. (2011). Genetic and environ-
mental influences on personality trait stability and growth during
the transition to adulthood: A three-wave longitudinal study. Jour-
nal of Personality and Social Psychology, 100, 545–556.
Johnson, A. M., Vernon, P. A., & Feiler, A. R. (2008). Behavioral
genetic studies of personality: An introduction and review of the
results of 50+ years of research. In G. J. Boyle, G. Matthews,
& D. H. Saklofske (Eds.), The SAGE handbook of personality
theory and assessment: Personality theories and models (Vol. 1,
pp. 145–173). London, England: Sage.
Johnson, W. (2010). Understanding the genetics of intelligence: Can
height help? Can corn oil? Current Directions in Psychological
Science, 19, 177–182.
Johnson, W., McGue, M., & Krueger, R. F. (2005). Personality stabil-
ity in late adulthood: A behavioral genetic analysis. Journal of
Personality, 73, 523–551.
Kandler, C., Bleidorn, W., Riemann, R., Angleitner, A., & Spinath,
F. M. (2011). The genetic links between the big five personality
traits and general interest domains. Personality and Social Psy-
chology Bulletin, 37, 1633–1643.
Kandler, C., Bleidorn, W., Riemann, R., Angleitner, A., & Spinath,
F. M. (2012). Life events as environmental states and genetic
traits and the role of personality: A longitudinal twin study.
Behavior Genetics, 42, 57–72.
Kandler, C., Bleidorn, W., Riemann, R., Spinath, F. M., Thiel, W., &
Angleitner, A. (2010). Sources of cumulative continuity in per-
sonality: A longitudinal multiple-rater twin study. Journal of Per-
sonality and Social Psychology, 98, 995–1008.
Loehlin, J. C., & Martin, N. G. (2001). Age changes in personality
traits and their heritabilities during the adult years: Evidence
from Australian Twin Registry samples. Personality and Indi-
vidual Differences, 30, 1147–1160.
Lucas, R. E., & Donnellan, M. B. (2011). Personality development
across the life span: Longitudinal analyses with a national sample
from Germany. Journal of Personality and Social Psychology,
101, 847–861.
McAdams, D. P., & Olson, B. D. (2010). Personality development:
Continuity and change over the life course. Annual Review of
Psychology, 61, 5.1–5.26.
McCartney, K., Harris, M. J., & Bernieri, F. (1990). Growing up and
growing apart: A developmental meta-analysis of twin studies.
Psychological Bulletin, 107, 226–237.
Nature and Nurture of Personality Development 7
McCrae, R. R., & Costa, P. T., Jr. (2008). The five-factor theory of
personality. In O. P. John, R. W. Robins, & L. A. Pervin (Eds.),
Handbook of personality: Theory and research (3rd ed., pp. 159–
181). New York, NY: Guilford.
McCrae, R. R., Costa, P. T., Jr., Ostendorf, F., Angleitner, A.,
Hrebrícková, M., Avia, M. D., . . . Smith, B. P. (2000). Nature
over nurture: Temperament, personality, and life span develop-
ment. Journal of Personality and Social Psychology, 78, 173–
186.
McCrae, R. R., Costa, P. T., Jr., Pedroso de Lima, M., Simões, A.,
Ostendorf, F., Angleitner, A., . . . Piedmont, R. L. (1999). Age dif-
ferences in personality across the adult life span: Parallels in five
cultures. Developmental Psychology, 35, 466–477.
McGue, M., Bacon, S., & Lykken, D. T. (1993). Personality stabil-
ity and change in early adulthood: A behavioral genetic analysis.
Developmental Psychology, 29, 96–109.
Pedersen, N. L. (1993). Genetic and environmental continuity and
change in personality. In T. J. Bouchard Jr. & P. Propping (Eds.),
Twins as a tool of behavioral genetics (pp. 147–162). New York,
NY: Wiley.
Pedersen, N. L., & Reynolds, C. A. (1998). Stability and change in
adult personality: Genetic and environmental components. Euro-
pean Journal of Personality, 12, 365–386.
Read, S., Vogler, G. P., Pedersen, N. L., & Johansson, B. (2006). Sta-
bility and change in genetic and environmental components of
personality in old age. Personality and Individual Differences,
40, 1637–1647.
Rettew, D. C., Rebollo-Mesa, I., Hudziak, J. J., Willemsen, G., &
Boomsma, D. I. (2008). Non-additive and additive genetic effects
on extraversion in 3314 Dutch adolescent twins and their parents.
Behavior Genetics, 38, 223–233.
Rettew, D. C., Vink, J. M., Willemsen, G., Doyle, A., Hudziak, J. J.,
& Boomsma, D. I. (2006). The genetic architecture of neuroti-
cism in 3301 Dutch adolescent twins as a function of age and sex:
A study from the Dutch twin register. Twin Research and Human
Genetics, 9, 24–29.
Roberts, B. W., & DelVecchio, W. F. (2000). The rank-order consis-
tency of personality from childhood to old age: A quantitative
review of longitudinal studies. Psychological Bulletin, 126,
3–25.
Roberts, B. W., & Mroczek, D. (2008). Personality trait change in
adulthood. Current Directions in Psychological Science, 17,
31–35.
Roberts, B. W., & Wood, D. (2006). Personality development in the
context of the Neo-Socioanalytic Model of personality. In D.
Mroczek & T. Little (Eds.), Handbook of personality develop-
ment (pp. 11–39). Mahwah, NJ: Erlbaum.
Roberts, B. W., Wood, D., & Caspi, A. (2008). The development of
personality traits in adulthood. In O. P. John, R. W. Robins, &
L. A. Pervin (Eds.), Handbook of personality: Theory and
research (3rd ed., pp. 375–398). New York, NY: Guilford.
Specht, J., Egloff, B., & Schmukle, S. C. (2011). Stability and
change of personality across the life course: The impact of age
and major life events on mean-level and rank-order stability of
the big five. Journal of Personality and Social Psychology, 101,
862–882.
Spengler, M., Gottschling, J., & Spinath, F. M. (2012). Personality in
childhood: A longitudinal behavior genetic approach. Personality
and Individual Differences, 53, 411–416.
Terracciano, A., Costa, P. T., Jr., & McCrae, R. R. (2006). Personality
plasticity after age 30. Personality and Social Psychology Bul-
letin, 32, 999–1009.
Viken, R. J., Rose, R. J., Kaprio, J., & Koskenvuo, M. (1994). A
developmental genetic analysis of adult personality: Extraversion
and neuroticism from 18 to 59 years of age. Journal of Personal-
ity and Social Psychology, 66, 722–730.
Weinstock, L. M., & Whisman, M. A. (2006). Neuroticism as a com-
mon feature of the depressive and anxiety disorders: A test of
the revised integrative hierarchical model in a national sample.
Journal of Abnormal Psychology, 115, 68–74.
Wray, N. R., Birley, A. J., Sullivan, P. F., Visscher, P. M., & Martin,
N. G. (2007). Genetic and phenotypic stability of measures of
neuroticism over 22 years. Twin Research and Human Genetics,
10, 695–702.
Wright, L. (1997). Twins: And what they tell us about who we are.
New York, NY: Wiley.
... Thus, only genetic influences that operate in a completely stable fashion across the lifespan are part of developmental constancy factors. Similarly, as environments are never perfectly stable at any point in the lifespan (Briley & Tucker-Drob, 2014;Kandler, 2012), it is only their stable, long-lasting influence that can operate as a developmental constancy factor. This is the case, for example, for environments that individuals have experienced earlier in their development and which exert a stable influence across the lifespan (e.g., Fraley, Roisman, & Haltigan, 2013). ...
... As internal factors, change might be induced as a concomitant of changes in other, related characteristics (i.e., correlated changes; Allemand & Martin, 2016;Klimstra, Bleidorn, Asendorpf, van Aken, & Denissen, 2013) such as social motives in the case of loneliness. Changing genetic influences are also part of the ART-component as they might contribute to predictable, but not perfectly stable patterns of how individuals approach the world (Briley & Tucker-Drob, 2014;Kandler, 2012;Scarr & McCartney, 1983). ...
... This coefficient indicates the sustainability of the time-varying factors captured by the ART-component (e.g., correlated changes, person-environment transactions). The finding that the β-coefficient is strongest in midlife might reflect the results of previous studies suggesting that, in general, environmental continuity is relatively high in this period of life compared to other periods of life (Briley & Tucker-Drob, 2014;Kandler, 2012;Rindfuss, 1991; for reviews, see Helson et al., 2006;Lachman, 2004). This environmental continuity, in turn, might be a consequence of individuals becoming more successful in shaping their environments in a way that corresponds to their individual characteristics (Wrzus et al., 2016). ...
Article
Full-text available
Individuals feel lonely when they perceive a discrepancy between their aspired and their actually experienced amount of closeness and intimacy in social relationships. In the present study, we disentangled developmental constancy factors, time-varying factors such as person-environment transactions, and stochastic mechanisms as sources of interindividual differences in loneliness by applying STARTS models in nationally representative samples from Germany (n = 13,397), Switzerland (n = 6,599), Australia (n = 30,496), and The Netherlands (n = 12,810). Across the 4 studies, we found trait-like sources reflecting developmental constancy factors and the influence of time-varying factors to account for 19-43% and 23-30% of interindividual differences in loneliness, respectively. Depending on the type of measurement instrument, state-like stochastic mechanisms accounted for 30% to 55% of interindividual differences, whereby multi-item measures were less affected by stochastic mechanisms. We found gradual sex differences but considerable differences between age groups regarding the amount of interindividual differences in loneliness accounted for by the three sources. Taken together, the results demonstrate that interindividual differences in loneliness are to a large degree trait-like. Based on these findings, we discuss implications for theory and measurement. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
... The study of personality provides a window into our human nature (Soto, 2019). Personality involves consistent styles of thinking, feeling, and behaving, often measured in terms of traits, which are heritable but also shaped by experiences (Briley & Tucker-Drob, 2014;Kandler, 2012). The Dark Triad (narcissism, Machiavellianism, subclinical psychopathy; Furnham, Richards, & Paulhus, 2013) has become popular for the study of dark personality traits (DTs), given their links to aggression, erratic behavior, aversive relationships, socioemotional deficits, low well-being, and amoral behavior (Muris et al., 2017). ...
... Along with heredity, psychosocial experiences play a critical role in personality trait expression across the lifespan (Kandler, 2012). Lower education is associated with increased dark trait expression in the general population (Lilienfeld, Latzman, Watts, Smith, & Dutton, 2014). ...
Article
Is human nature good or evil? Light or dark? Machiavelli described human nature as selfish and greedy. Abraham Lincoln appealed to the better angels of our nature. Drawing on primate research and human personality science we provide insight into this centuries-old debate. Latent profile analyses of self-reports from two general population samples (Total N = 36,788) uncovered distinct personality subtypes, a “dark” trait profile (Machiavellian, narcissistic, psychopathic traits), a “light” trait profile (Kantianism, humanism, faith in humanity), and a “middle” subtype threading between the other two. The light subtype evidenced affiliative interpersonal functioning and greater trust in others, as well as higher life satisfaction and positive self-image. The dark subtype reflected interpersonal dominance, competitiveness, and aggression. In both general population samples, the dark trait subtype was the least prevalent. However, in a third sample of U.S. Senators (N = 143), based on observational data, the dark subtype was most prevalent and associated with longer tenure in political office, though less legislative success. Results suggest that human nature reflects both light and dark features, serving affiliative (pro-social) and dominance (pro-self) functions, with subtype prevalence varying considerably based on profession.
... Thinking of personality as a motivational goal-oriented cybernetic system is consistent with recent research that finds the Big Five personality domains are replicable predictors of major life outcomes (Soto, 2019). Other research indicates that personality traits are moderately heritable, though heritability decreases with age, and change in personality trait expression is also due to engagement in social roles and life experiences, as well as biological maturation (Kandler, 2012). Personality change appears to be a developmental process, referred to as the maturity principle (Bleidorn, 2015). ...
Article
Full-text available
There is an expanding literature on the theoretical and empirical connections between personality and psychopathology, and their shared neurobiological correlates. Recent cybernetic theories of personality and psychopathology, as well as affective neuroscience theory, provide grounding for understanding neurobiological–personality–psychopathology (NPP) associations. With the emergence of large sample datasets (e.g., Human Connectome Project) advanced quantitative modeling can be used to rigorously test dynamic statistical representations of NPP connections. Also, research suggests that these connections are influenced by sex, and large samples provide the opportunity to examine how NPP associations might be moderated by sex. The current study used a large sample from the Duke Neurogenetics Study (DNS) to examine how amygdala activation to facial expressions was linked with self-report of personality traits and clinical interviews of internalizing and externalizing symptoms of psychopathology. Structural equation modeling results revealed direct associations of amygdala activation with personality trait expression, as well as indirect associations (though personality) with symptoms of psychopathology. Moreover, the NPP links were moderated by sex. The current results are in line with research that identifies a broader role played by the amygdala in personality and provide potential insights for continued research in personality neuroscience and recent theories on the neurobiology of personality.
... Meta-analyses of longitudinal twin studies have shown that genetic influences on extraversion (similar to positive affectivity) increased until people reach their early forties and then declined over time. On the other hand, genetic influences on neuroticism (similar to negative affectivity) seemed to decrease after people reach adulthood (Kandler, 2012). ...
Chapter
Full-text available
In recent years, there has been an increasing focus on the collective affective experiences of work teams. Affective climate (affective experiences shared by team members) has become an important factor in understanding how teams work and their results. Many efforts have been dedicated to identifying the processes through which this collective phenomenon emerges and its antecedents and consequences. In this chapter, we review the literature on affective climate. We begin by first addressing what affective climate is, how it is described, and the mechanisms explaining how team members share affect. We follow up by describing emergence processes of affective climate in teams and reviewing its antecedents and consequences. Next, we dedicate a section to examining the dynamic nature of this phenomenon. We conclude by noting some emerging areas of research in the affective climate literature.
... Human personality have been shown to change due to several factors such as intrinsic maturation processes conveyed by genetic component (McCrae and Costa, 2008), environmental component (Kandler, 2012), contextual factors (Boyce et al., 2015) and the continuous interactions between person and the environment (Roberts et al., 2008). The effect of personality changes could be visible in commonly occurring life events, for example, social life, quality of marriage and relationships (Neyer and Lehnart, 2007;Roberts and Bogg, 2004;Watson and Humrichouse, 2006), following unemployment (Boyce et al., 2015), variations in marital level (Specht et al., 2011), workplace experiences (Roberts et al., 2003), and during retirement (Specht et al., 2011). ...
Article
Personality traits play a significant role in many organisational parameters, such as job satisfaction, performance, employability, and leadership for employers. One of the major social networks, the unemployed derives satisfaction from is Facebook. The focus of this article is to introduce association rule mining and demonstrate how it may be applied by employers to unravel the characteristic profiles of the unemployed Facebook users in the recruitment process by employers, for example, recruitment of public relations officers, marketers, and advertisers. Data for this study comprised 3,000 unemployed Facebook users in Nigeria. This study employs association rule mining for mining hidden but interesting and unusual relationships among unemployed Facebook users. The fundamental finding of this study is that employers of labour can adopt association rule mining to unravel job relevant attributes suitable for specific organisational tasks by examining Facebook activities of potential employees. Other managerial and theoretical implications are discussed.
... Thus, Extraversion might be indicative of the initiation and quantity aspect of social relationships and of facing new transitions. Extraverted people may also see life events more positively and controllable (Kandler, 2012), which could further facilitate starting new events and adopting new roles. ...
Article
Full-text available
During adolescence and young adulthood, individuals show personality changes and experience various life transitions. Whereas personality might affect the timing of life transitions, life transitions might also induce personality maturation. We examined Big Five personality maturation from age 12 to 25 using a 9‐year longitudinal study of Dutch youths from two cohorts (n1 = 683, MageT1 = 12.70; n2 = 268, Mage T1 = 16.87). We linked personality maturation to the incidence and timing of four transitions: first romantic relationship, leaving the parental home, first job, and first cohabitation or marriage. Results indicated increases in mean levels, rank‐order stabilities and profile stability of personality between age 12 and 25, which were largely replicated across the cohorts. Very few associations between personality and life transitions existed. However, higher mean‐level Extraversion predicted leaving the parental home and starting the first romantic relationship, an earlier age when starting the first job, and an earlier average timing of transitions. Regarding social investment effects, we only found that those who never experienced a romantic relationship at age 25 decreased, while those who did increased in profile stability over time. These results suggest that personality consistently matures during adolescence and young adulthood and that higher Extraversion predict greater readiness for new steps towards adulthood. © 2020 The Authors. European Journal of Personality published by John Wiley & Sons Ltd on behalf of European Association of Personality Psychology
... There appears to be minimal genetic influence in infancy (Planalp et al., 2017), with increasing J o u r n a l P r e -p r o o f heritability through age 30, and then declining effects through the rest of the lifespan (Kandler, 2012). The heritability of neural indicators of PVS function may also change across development, but this possibility has yet to be examined. ...
Article
Full-text available
Reduced activation of positive valence systems (PVS), including blunted neural and physiological responses to pleasant stimuli and rewards, has been shown to prospectively predict the development of psychopathology. Yet, little is known about how reduced PVS activation emerges across development or what implications it has for prevention. We review genetic, temperament, parenting, and naturalistic and laboratory stress research on neural measures of PVS and outline developmentally-informed models of trajectories of PVS activation. PVS function is partly heritable and appears to reflect individual differences in early-emerging temperament traits. Although lab-induced stressors blunt PVS activation, effects of parenting and naturalistic stress on PVS are mixed and depend on the type of stress, developmental timing, and interactions amongst risk factors. We propose that there may be multiple, dynamic developmental trajectories to reduced PVS activation in which combinations of genes, temperament, and exposure to severe, prolonged, or uncontrollable stress may exert direct and interactive effects on PVS function. Critically, these risk factors may alter PVS development trajectories and/or PVS sensitivity to proximal stressors. Distinct factors may converge such that PVS activation proceeds along a typical, accelerated, chronically low, or stress-reactive trajectory. Finally, we present directions for future research with translational implications.
... Meta-analyses of longitudinal twin studies have shown that genetic influences on extraversion (similar to positive affectivity) increased until people reach their early forties and then declined over time. On the other hand, genetic influences on neuroticism (similar to negative affectivity) seemed to decrease after people reach adulthood (Kandler, 2012). ...
... [13][14][15][16][17] Personality is an inherent trait from birth and may not be overly dictated by environment until after an individual reaches their 30s. [18][19][20][21] Personality traits have been associated with academic achievement [22][23][24][25][26] in addition to interpersonal skills like cooperativity, 27 empathy, [28][29][30] ethics and leadership, 31,32 trustworthiness, 28 and other personal values. 33 Researchers have established a fivefactor structure for personality which includes: openness to experience, conscientiousness, extraversion, agreeableness, and emotional stability (or neuroticism). ...
Article
Objective. To explore the relationship between pharmacy students' social and behavioral competencies assessed using multiple mini-interviews (MMIs) and their personality traits. Methods. A retrospective study was conducted using data from two Doctor of Pharmacy (PharmD) cohorts. Students' self-reported scores from an externally validated tool completed during their first professional year that assessed five personality traits (openness to experiences, conscientiousness, extraversion, agreeableness, and emotionality) were collected. Students' scores on empathy, integrity, adaptability, critical thinking, and collaboration were collected during MMIs conducted during the admissions process. Analysis of variance was used to test the homogeneity of the sample, and correlation analyses were used to determine the strength of relationships between variables. Results. When examining for associations between students' personality traits and their social and behavioral competencies measured during the MMIs, we found a few significant but very weak correlations with extraversion. Conclusion. Our results revealed weak to negligible correlations between scores on competencies measured during the MMIs and personality traits, potentially because the assessments measured different constructs.
Book
Christian T. Toth untersucht den Einfluss von Persönlichkeitsfaktoren und dem Prokrastinationsverhalten von Teilnehmern und Teilnehmerinnen in Massive Open Online Courses (MOOCs). Der Autor bettet die Forschungsergebnisse in eine Rezeption und Systematisierung der internationalen MOOC-Forschung ein und diskutiert sie hinsichtlich ihrer Bedeutsamkeit für die (Weiter-)Entwicklung. Schließlich werden die Ergebnisse, auch bezogen auf den digital divide, aus einer gesellschaftsanalytischen Perspektive gedeutet. Die Basis der vorliegenden Forschung sind die in Kooperation mit dem MOOC-Provider ‚Iversity‘ erhobenen Daten aus vier internationalen MOOCs. Der Inhalt • Forschungsüberblick zu Massive Open Online Courses (MOOCs) • Die Bedeutung der Persönlichkeit und der Prokrastination im E-Learning • Quantitative Analysen von vier internationalen MOOCs • Kritische Analyse im Zusammenhang mit der digitalen Spaltung Die Zielgruppen • Dozierende und Studierende der Erziehungs-, Bildungs- und Sozialwissenschaften • Praktiker und Praktikerinnen im Bereich des E-Learning, der Medien- und Erwachsenenbildung und der außerberuflichen Weiterbildung Der Autor Christian T. Toth ist wissenschaftlicher Mitarbeiter am Institut für Erziehungswissenschaft der Johannes Gutenberg-Universität in Mainz und forscht an der Schnittstelle von Allgemeiner Pädagogik und Medienpädagogik mit Schwerpunkten in der Persönlichkeits- und Bildungsforschung.
Article
Full-text available
This is the first genetically informative study in which multiple informants were used to quantify the genetic and environmental sources of individual differences in general interests as well as the phenotypic and genetic links between general interests and Big Five personality traits. Self-reports and two peer ratings from 844 individuals, including 225 monozygotic and 113 dizygotic complete twin pairs, were collected. Multiple-rater scores (composites) revealed that the averaged levels of genetic and environmental effects on seven broad interest domains were similar to those on personality traits. Multivariate analyses showed that about 35% of the genetic and 9% of the environmental variance in interests were explained by personality domains, in particular by Openness. The findings suggest that interests cannot easily be considered as a byproduct of the interactions between personality genotypes and the environmental influences but rather as an internal regulation of behavior with an own genetic basis.
Article
The relative stability and magnitude of genetic and environmental effects underlying major dimensions of adolescent personality across time were investigated. The Junior Eysenck Personality Questionnaire was administered to over 540 twin pairs at ages 12, 14 and 16 years. Their personality scores were analyzed using genetic simplex modeling which explicitly took into account the longitudinal nature of the data. With the exception of the dimension lie, multivariate model fitting results revealed that familial aggregation was entirely explained by additive genetic effects. Results from simplex model fitting suggest that large proportions of the additive genetic variance observed at ages 14 and 16 years could be explained by genetic effects present at the age of 12 years. There was also evidence for smaller but significant genetic innovations at 14 and 16 years of age for male and female neuroticism, at 14 years for male extraversion, at 14 and 16 years for female psychoticism, and at 14 years for male psychoticism.
Article
The enduring nature of personality, particularly in adulthood, has been demonstrated in numerous cross-sectional and longitudinal studies where high stability has been observed even with decades between testing intervals. Biometrical studies, reporting genetic effects as the primary cause of familial resemblance, have been interpreted as lending further support to theories concerning an inherent stability of personality. Heterogeneity in heritability estimates across age cohorts may, however, alter this notion. Furthermore, recent phenotypic studies report some evidence for change over the life course for characteristics such as 'outgoingness'. The purpose of the present analysis was to examine longitudinal stability and change in the sources of variation in personality in the latter half of the life-span using a twin/adoption design with up to four times of measurement. Data from the Swedish Adoption/Twin Study of Aging (SATSA) are used both to demonstrate how genetic and environmental effects can contribute to phenotypic stability, and to estimate the extent to which these influences are, themselves, stable. Particularly intriguing are findings of increasing variability in rate of change despite relative mean level stability as well as genetic stability.
Article
Although the subject is controversial, identifying the specific genes that contribute to general cognitive ability (GCA) has seemed to have good prospects, at least among psychological traits. GCA is reliably and validly measured and strongly heritable, and it shows genetically mediated physiological associations and developmental stability. To date, however, results have been disappointing. Human height shows these measurement characteristics even more strongly than GCA, yet data have indicated that no individual gene has more than trivial effects and this is also true for corn oil. The potential for environmental trigger of genetic expression, long recognized in evolutionary and developmental genetics, as applied to these seemingly disparate traits, can help us to understand the apparent contradiction between the heritability of intelligence and other psychological traits and the difficulty of identifying specific genetic effects.
Article
[discuss] 5 aspects of genetic and environmental involvement for continuity and change in personality [of twins] / (1) the differential relative importance of genetic and environmental effects across the life span; (2) the importance of genetic and environmental effects for phenotypic stability and change during development and aging; (3) stability and change in genetic and environmental effects; (4) the involvement of genetic and environmental effects in structural stability and change; and (5) factors influencing continuity vs. those influencing change (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Article
79 monozygotic and 48 same-sex dizygotic twin pairs completed the Multidimensional Personality Questionnaire twice, averaging 20 yrs of age at 1st and 30 yrs at 2nd testing. There were significant mean decreases in measures of Negative Emotionality (NE), increases in measures of Constraint (CO), but no significant mean changes for measures of Positive Emotionality (PE). Variance decreased for measures of NE but remained stable for measures of PE and CO. Biometrical analyses revealed that (1) NE variance reduction was due to diminishing genetic influences, (2) personality stability was due largely to genetic factors, and (3) although some evidence for genetic influence on personality change was observed, change was determined largely by environmental factors. It is concluded that the stable core of personality is strongly associated with genetic factors but that personality change largely reflects environmental factors. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Article
Although well studied in adulthood, the genetic and environmental influences on personality in middle childhood has not yet been fully explored. Particularly little is known about the development of children‘s self-perceptions of personality. This is the first behavior genetic study to assess the Five Factor dimensions of personality in eight to ten and eleven to fourteen year-old children. Longitudinal data from 202 mono- and dizygotic twin pairs were collected in the CoSMoS twin study (Spinath & Wolf, 2006). A phenotypic confirmatory factor analysis supported the personality measure’s five-factor structure identifying Neuroticism, Openness, Conscientiousness, Extraversion, and Agreeableness. Univariate genetic analyses revealed additive genetic effects as well as shared and non-shared environmental effects for Neuroticism and Agreeableness. Openness, Conscientiousness, and Extraversion showed additive as well as non-additive genetic and non-shared environmental influences. Longitudinal results across four years indicated that genetic influences mainly contributed to stability whereas environmental effects primarily accounted for change. Results are discussed within the context of a developmental perspective on the transition from early to middle childhood, and with respect to behavior genetic results from adult samples.
Article
Although well studied in adulthood, the genetic and environmental influences on personality in middle childhood has not yet been fully explored. Particularly little is known about the development of children's self-perceptions of personality. This is the first behavior genetic study to assess the Five Factor dimensions of personality in eight to ten and eleven to fourteen year-old children. Longitudinal data from 202 mono- and dizygotic twin pairs were collected in the CoSMoS twin study (Spinath & Wolf, 2006). A phenotypic confirmatory factor analysis supported the personality measure's five-factor structure identifying Neuroticism, Openness, Conscientiousness, Extraversion, and Agreeableness. Univariate genetic analyses revealed additive genetic effects as well as shared and non-shared environmental effects for Neuroticism and Agreeableness. Openness, Conscientiousness, and Extraversion showed additive as well as non-additive genetic and non-shared environmental influences. Longitudinal results across four years indicated that genetic influences mainly contributed to stability whereas environmental effects primarily accounted for change. Results are discussed within the context of a developmental perspective on the transition from early to middle childhood, and with respect to behavior genetic results from adult samples.