Article

Reproducibility of Four-dimensional Computed Tomography-based Lung Ventilation Imaging

Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr., Stanford, CA 94305-5847.
Academic radiology (Impact Factor: 1.75). 09/2012; 19(12). DOI: 10.1016/j.acra.2012.07.006
Source: PubMed

ABSTRACT

Rationale and objectives:
A novel ventilation imaging method based on four-dimensional (4D) computed tomography (CT) has been applied to the field of radiation oncology. Understanding its reproducibility is a prerequisite for clinical applications. The purpose of this study was to quantify the reproducibility of 4D CT ventilation imaging over different days and the same session.

Materials and methods:
Two ventilation images were created from repeat 4D CT scans acquired over the average time frames of 15 days for 6 lung cancer patients and 5 minutes for another 6 patients. The reproducibility was quantified using the voxel-based Spearman rank correlation coefficients for all lung voxels and Dice similarity coefficients (DSC) for the spatial overlap of segmented high-, moderate-, and low-functional lung volumes. Furthermore, the relationship between the variation in abdominal motion range as a measure of the depth of breathing and variation in ventilation was evaluated using linear regression.

Results:
The voxel-based correlation between the two ventilation images was moderate on average (0.50 ± 0.15). The DSCs were also moderate for the high- (0.60 ± 0.08), moderate- (0.46 ± 0.06), and low-functional lung (0.58 ± 0.09). No patients demonstrated strong correlations. The relationship between the motion range variation and ventilation variation was found to be moderate and significant.

Conclusions:
We investigated the reproducibility of 4D CT ventilation imaging over the time frames of 15 days and 5 minutes and found that it was only moderately reproducible. Respiratory variation during 4D CT scans was found to deteriorate the reproducibility. Improvement of 4D CT imaging is necessary to increase the reproducibility of 4D CT ventilation imaging.

Download full-text

Full-text

Available from: Julian C Hong
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Lung function depends on lung expansion and contraction during the respiratory cycle. Respiratory-gated CT imaging and image registration can be used to estimate the regional lung volume change by observing CT voxel density changes during inspiration or expiration. In this study, the authors examine the reproducibility of intensity-based estimates of lung tissue expansion and contraction in three mechanically ventilated sheep and ten spontaneously breathing humans. The intensity-based estimates are compared to the estimates of lung function derived from image registration deformation field.
    No preview · Article · Jun 2013 · Medical Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Four-dimensional (4D) computed tomography (CT) ventilation imaging is a novel promising technique for lung functional imaging. The current standard 4D CT technique using phase-based sorting frequently results in artifacts, which may deteriorate the accuracy of ventilation imaging. The purpose of this study was to quantify the variability of 4D CT ventilation imaging due to 4D CT sorting. Methods: 4D CT image sets from nine lung cancer patients were each sorted by the phase-based method and anatomic similarity-based method, designed to reduce artifacts, with corresponding ventilation images created for each method. Artifacts in the resulting 4D CT images were quantified with the artifact score which was defined based on the difference between the normalized cross correlation for CT slices within a CT data segment and that for CT slices bordering the interface between adjacent CT data segments. The ventilation variation was quantified using voxel-based Spearman rank correlation coefficients for all lung voxels, and Dice similarity coefficients (DSC) for the spatial overlap of low-functional lung volumes. Furthermore, the correlations with matching single-photon emission CT (SPECT) ventilation images (assumed ground truth) were evaluated for three patients to investigate which sorting method provides higher physiologic accuracy. Results: Anatomic similarity-based sorting reduced 4D CT artifacts compared to phase-based sorting (artifact score, 0.45 ± 0.14 vs 0.58 ± 0.24, p = 0.10 at peak-exhale; 0.63 ± 0.19 vs 0.71 ± 0.31, p = 0.25 at peak-inhale). The voxel-based correlation between the two ventilation images was 0.69 ± 0.26 on average, ranging from 0.03 to 0.85. The DSC was 0.71 ± 0.13 on average. Anatomic similarity-based sorting yielded significantly fewer lung voxels with paradoxical negative ventilation values than phase-based sorting (5.0 ± 2.6% vs 9.7 ± 8.4%, p = 0.05), and improved the correlation with SPECT ventilation regionally. Conclusions: The variability of 4D CT ventilation imaging due to 4D CT sorting was moderate overall and substantial in some cases, suggesting that 4D CT artifacts are an important source of variations in 4D CT ventilation imaging. Reduction of 4D CT artifacts provided more physiologically convincing and accurate ventilation estimates. Further studies are needed to confirm this result.
    Full-text · Article · Oct 2013 · Medical Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).
    No preview · Article · Oct 2013 · Medical Physics
Show more