Oral Administration of the Pimelic Diphenylamide HDAC Inhibitor HDACi 4b Is Unsuitable for Chronic Inhibition of HDAC Activity in the CNS In Vivo

National Center of Neurology and Psychiatry, Japan
PLoS ONE (Impact Factor: 3.23). 09/2012; 7(9):e44498. DOI: 10.1371/journal.pone.0044498
Source: PubMed


Histone deacetylase (HDAC) inhibitors have received considerable attention as potential therapeutics for a variety of cancers and neurological disorders. Recent publications on a class of pimelic diphenylamide HDAC inhibitors have highlighted their promise in the treatment of the neurodegenerative diseases Friedreich's ataxia and Huntington's disease, based on efficacy in cell and mouse models. These studies' authors have proposed that the unique action of these compounds compared to hydroxamic acid-based HDAC inhibitors results from their unusual slow-on/slow-off kinetics of binding, preferentially to HDAC3, resulting in a distinctive pharmacological profile and reduced toxicity. Here, we evaluate the HDAC subtype selectivity, cellular activity, absorption, distribution, metabolism and excretion (ADME) properties, as well as the central pharmacodynamic profile of one such compound, HDACi 4b, previously described to show efficacy in vivo in the R6/2 mouse model of Huntington's disease. Based on our data reported here, we conclude that while the in vitro selectivity and binding mode are largely in agreement with previous reports, the physicochemical properties, metabolic and p-glycoprotein (Pgp) substrate liability of HDACi 4b render this compound suboptimal to investigate central Class I HDAC inhibition in vivo in mouse per oral administration. A drug administration regimen using HDACi 4b dissolved in drinking water was used in the previous proof of concept study, casting doubt on the validation of CNS HDAC3 inhibition as a target for the treatment of Huntington's disease. We highlight physicochemical stability and metabolic issues with 4b that are likely intrinsic liabilities of the benzamide chemotype in general.

  • Source
    • "In a mouse model of Freidich’s Ataxia, treatment with HDAC inhibitors with an HDAC3 preference enhanced motor coordination and ameliorated multiple pathological deficits [32]. Using a similar compound another study found that HDAC inhibition reduced behavioural phenotypes and pathology as well as partially correcting transcriptional deregulation in a mouse model of HD [31] although other studies have questioned the specificity of the drug or did not reproduce all the beneficial effects found in the first study [44,45]. Furthermore, HDAC3 knockdown in a C. elegans HD model suppressed neurotoxicity [30], consistent with our findings of HDAC3 enhancing cellular toxicity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinocerebellar ataxia type 7 (SCA7) is caused by a toxic polyglutamine (polyQ) expansion in the N-terminus of the protein ataxin-7. Ataxin-7 has a known function in the histone acetylase complex, Spt/Ada/Gcn5 acetylase (STAGA) chromatin-remodeling complex. We hypothesized that some histone deacetylase (HDAC) family members would impact the posttranslational modification of normal and expanded ataxin-7 and possibly modulate ataxin-7 function or neurotoxicity associated with the polyQ expansion. Interestingly, when we coexpressed each HDAC family member in the presence of ataxin-7 we found that HDAC3 increased the posttranslational modification of normal and expanded ataxin-7. Specifically, HDAC3 stabilized ataxin-7 and increased modification of the protein. Further, HDAC3 physically interacts with ataxin-7. The physical interaction of HDAC3 with normal and polyQ-expanded ataxin-7 affects the toxicity in a polyQ-dependent manner. We detect robust HDAC3 expression in neurons and glia in the cerebellum and an increase in the levels of HDAC3 in SCA7 mice. Consistent with this we found altered lysine acetylation levels and deacetylase activity in the brains of SCA7 transgenic mice. This study implicates HDAC3 and ataxin-7 interaction as a target for therapeutic intervention in SCA7, adding to a growing list of neurodegenerative diseases that may be treated by HDAC inhibitors.
    Full-text · Article · Oct 2013 · Molecular Neurodegeneration
  • Source
    • "In addition, based on our in vitro assays, the free brain levels did at least transiently exceed the IC50 values for HDAC1, HDAC3, HDAC6, and HDAC10. Therefore, taken together with reports of increased histone acetylation following peripheral delivery of SAHA [36], [40], this suggests that despite limited availability of free drug, some degree of target engagement for some HDAC isozymes may occur in the brain. While the roles of HDACs other than HDAC2 in neurobehavior are not well understood, it is possible their inhibition could affect behavior of wildtype mice even if HDAC2 is not significantly inhibited. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer's disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical behavioral pharmacology.
    Full-text · Article · Jul 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developing novel therapeutics and diagnostic tools based upon an understanding of neuroplasticity is critical in order to improve the treatment and ultimately the prevention of a broad range of nervous system disorders. In the case of mood disorders, such as major depressive disorder and bipolar disorder, where diagnoses are based solely on nosology rather than pathophysiology, there exists a clear unmet medical need to advance our understanding of the underlying molecular mechanisms and to develop fundamentally new mechanism experimental medicines with improved efficacy. In this context, recent preclinical molecular, cellular, and behavioral findings have begun to reveal the importance of epigenetic mechanisms that alter chromatin structure and dynamically regulate patterns of gene expression that may play a critical role in the pathophysiology of mood disorders. Here, we will review recent advances involving the use of animal models in combination with genetic and pharmacological probes to dissect the underlying molecular mechanisms and neurobiological consequence of targeting this chromatin-mediated neuroplasticity. We discuss evidence for the direct and indirect effects of mood stabilizers, antidepressants, and antipsychotics, among their many other effects, on chromatin-modifying enzmyes and on the epigenetic state of defined genomic loci, in defined cell types and in specific regions of the brain. These data, as well as findings from patient-derived tissue, have also begun to reveal alterations of epigenetic mechanisms in the pathophysiology and treatment of mood disorders. We summarize growing evidence supporting the notion that selectively targeting chromatin-modifying complexes, including those containing histone deacetylases (HDACs), provides a means to reversibly alter the acetylation state of neuronal chromatin and benefically impact neuronal activity-regulated gene transcription and mood-related behaviors. Looking beyond current knowledge, we discuss how high-resolution, whole-genome methodologies, such as RNA-sequencing (RNA-Seq) for transcriptome analysis and chromatin immunoprecipitation-sequencng (ChIP-Seq) for analyzing genome-wide occupancy of chromatin-associated factors, are beginning to provide an unprecedented view of both specific genomic loci as well as global properties of chromatin in the nervous system. These methodologies when applied to the characterization of model systems, including those of patient-derived induced pluripotent (iPS) cell and induced neurons (iNs), will greatly shape our understanding of epigenetic mechanisms and the impact of genetic variation on the regulatory regions of the human genome that can affect neuroplasticty. Finally, we point out critical unanswered questions and areas where additional data are needed in order to better understand the potential to target mechanisms of chromatin-mediated neuroplasticity for novel treatments of mood and other psychiatric disorders.
    No preview · Article · Jan 2013 · Neuroscience
Show more