Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure

NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States. Electronic address: .
Medical Hypotheses (Impact Factor: 1.07). 09/2012; 79(5):642-8. DOI: 10.1016/j.mehy.2012.07.043
Source: PubMed


High-level cadmium (Cd) exposure has long been known to induce nephropathy, severe osteoporosis, and fractures in humans. More recent epidemiology, however, reveals that, in populations not known to have important industrial exposure to this heavy metal, high-normal blood or urine Cd levels correlate with increased risk for vascular disorders, cancers, diabetes, and total mortality, as well as osteoporosis and nephropathy. Since these disorders appear unlikely to expedite Cd absorption, and since Cd has promoted these pathologies in rodent studies, it seems reasonable to conclude that Cd is an important mediating risk factor for these disorders in humans. Avoiding tobacco smoke or frequent ingestion of shellfish or organ meats can lessen humans exposure to Cd, but the chief dietary sources of Cd are plant-derived foods - green leafy vegetables, whole grains, tubers, and root vegetables - typically recommended for their health-supportive properties; indeed, among non-smokers, vegans tend to have the highest Cd body burden. Fortunately, iron sufficiency and ample dietary intakes of calcium, magnesium, and zinc can impede absorption of dietary Cd, both by down-regulating intestinal expression of mineral transporters, and by directly competing with Cd for access to these transporters. Correction of iron deficiency appears to be of particular importance for controlling Cd absorption. Moreover, zinc supplementation can counteract the toxicity of Cd already in the body via induction of metallothionein, which binds Cd avidly via its sulfhydryl groups; so long as it remains sequestered in this form, Cd is innocuous. Zinc supplementation may in any case be recommendable, as optimal zinc status exerts protective anti-inflammatory, antioxidant, and immunosupportive effects. Inasmuch as the toxicity of Cd appears to be mediated in large part by oxidative stress, ingestion of spirulina, lipoic acid, melatonin, and N-acetylcysteine may also have potential for mitigating the risk associated with Cd exposure, as suggested by rodent studies. Hence, although Cd may prove to be a major risk factor for morbidity and mortality in humans, practical strategies for limiting its absorption and pathogenic impact are at hand.

1 Follower
17 Reads
  • Source
    • "Some toxic effects of Cd are a result of its capacity to stimulate oxidative stress [20, 21] by interacting with the thiol groups of antioxidant enzymes (demonstrated in vivo and in vitro), and thus inhibiting the latter [2]. The administration during gestation and lactation of natural antioxidants, including vitamin E, carotenoids, vitamin B6, and zinc, has prevented a number of the negative effects of Cd [22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Evaluation of the effects of Arthrospira maxima (AM) was made, otherwise known as Spirulina, on the teratogenicity, genotoxicity, and DNA oxidation processes induced by cadmium (Cd). Pregnant ICR mice were divided into groups and administered water, Cd only, AM only, or AM plus Cd. AM was administered orally at doses of 200, 400, and 800 mg/kg from gestational day 0 (GD0) to GD17, and at GD7 there was an intraperitoneal challenge of Cd (1.5 mg/kg). Cd only caused fetal malformations, including exencephaly, micrognathia, ablephary, microphthalmia, and clubfoot, as well as a significant increase in the quantity of micronucleated polychromatic erythrocytes (MNPE) and of micronucleated normochromatic erythrocytes (MNNE) in blood cells of both the mothers and their fetuses. An increased level of oxidation was also found, measured by a rise in the levels of the adduct 8-hydroxy-2-deoxyguanosine. In a dose-dependent manner, AM significantly reduced the number of external, visceral, and skeletal malformations, the quantity of MNPE and MNNE, and the level of DNA oxidation. The results suggest that AM may reduce the genotoxic effects and rates of congenital malformations caused by exposure to Cd in utero and that the antioxidant activity of this cyanobacterium could be responsible, at least in part, for producing this effect.
    Full-text · Article · Nov 2013 · Evidence-based Complementary and Alternative Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium is a heavy metal of considerable toxicity with destructive impact on most organ systems. It is widely distributed in humans, the chief sources of contamination being cigarette smoke, welding, and contaminated food and beverages. Toxic impacts are discussed and appear to be proportional to body burden of cadmium. Detoxification of cadmium with EDTA and other chelators is possible and has been shown to be therapeutically beneficial in humans and animals when done using established protocols.
    Full-text · Article · Jun 2013 · The Scientific World Journal
  • Source

    Full-text · Article · Sep 2014 · British Journal Of Nutrition
Show more