Differences in simple morphological variables in ruptured and unruptured middle cerebral artery aneurysms Clinical article

Department of Neurosurgery, and.
Journal of Neurosurgery (Impact Factor: 3.74). 09/2012; 117(5). DOI: 10.3171/2012.7.JNS111766
Source: PubMed


Management of unruptured intracranial aneurysms remains controversial in neurosurgery. The contribution of morphological parameters has not been included in the treatment paradigm in a systematic manner or for any particular aneurysm location. The authors present a large sample of middle cerebral artery (MCA) aneurysms that were assessed using morphological variables to determine the parameters associated with aneurysm rupture.

Preoperative CT angiography (CTA) studies were evaluated using Slicer software to generate 3D models of the aneurysms and their surrounding vascular architecture. Morphological parameters examined in each model included 5 variables already defined in the literature (aneurysm size, aspect ratio, aneurysm angle, vessel angle, and size ratio) and 3 novel variables (flow angle, distance to the genu, and parent-daughter angle). Univariate and multivariate statistical analyses were performed to determine statistical significance.

Between 2005 and 2008, 132 MCA aneurysms were treated at a single institution, and CTA studies of 79 aneurysms (40 ruptured and 39 unruptured) were analyzed. Fifty-three aneurysms were excluded because of reoperation (4), associated AVM (2), or lack of preoperative CTA studies (47). Ruptured aneurysms were associated with larger size, greater aspect ratio, larger aneurysm and flow angles, and smaller parent-daughter angle. Multivariate logistic regression revealed that aspect ratio, flow angle, and parent-daughter angle were the strongest factors associated with ruptured aneurysms.

Aspect ratio, flow angle, and parent-daughter angle are more strongly associated with ruptured MCA aneurysms than size. The association of parameters independent of aneurysm morphology with ruptured aneurysms suggests that these parameters may be associated with an increased risk of aneurysm rupture. These factors are readily applied in clinical practice and should be considered in addition to aneurysm size when assessing the risk of aneurysm rupture specific to the MCA location.

24 Reads
  • Source
    • "Morphological parameters examined in 3D aneurysm models included several variables already defined in the studies investigating other types of aneurysm (aneurysm size, aneurysm volume, aspect ratio, aneurysm angle, vessel angles, and size ratio, flow angles, and vessel-to-vessel angles)[7], [8], [10], [17] as well as several novel parameters that applied to the specific anatomy of the PCoA (distance from PCoA origin (or proximal neck of the aneurysm) to the internal carotid artery (ICA) bifurcation, angle between the proximal ICA (ICA1) and PCoA). (Figures 1 and 2) Briefly, aneurysm maximum height was utilized as an estimate of aneurysm size and refers to the largest cross-sectional diameter of the aneurysm measured from the base of the aneurysm from the reconstructed 3D model. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The rupture risk of unruptured intracranial aneurysms is known to be dependent on the size of the aneurysm. However, the association of morphological characteristics with ruptured aneurysms has not been established in a systematic and location specific manner for the most common aneurysm locations. We evaluated posterior communicating artery (PCoA) aneurysms for morphological parameters associated with aneurysm rupture in that location. CT angiograms were evaluated to generate 3-D models of the aneurysms and surrounding vasculature. Univariate and multivariate analyses were performed to evaluate morphological parameters including aneurysm volume, aspect ratio, size ratio, distance to ICA bifurcation, aneurysm angle, vessel angles, flow angles, and vessel-to-vessel angles. From 2005-2012, 148 PCoA aneurysms were treated in a single institution. Preoperative CTAs from 63 patients (40 ruptured, 23 unruptured) were available and analyzed. Multivariate logistic regression revealed that smaller volume (p = 0.011), larger aneurysm neck diameter (0.048), and shorter ICA bifurcation to aneurysm distance (p = 0.005) were the most strongly associated with aneurysm rupture after adjusting for all other clinical and morphological variables. Multivariate subgroup analysis for patients with visualized PCoA demonstrated that larger neck diameter (p = 0.018) and shorter ICA bifurcation to aneurysm distance (p = 0.011) were significantly associated with rupture. Intracerebral hemorrhage was associated with smaller volume, larger maximum height, and smaller aneurysm angle, in addition to lateral projection, male sex, and lack of hypertension. We found that shorter ICA bifurcation to aneurysm distance is significantly associated with PCoA aneurysm rupture. This is a new physically intuitive parameter that can be measured easily and therefore be readily applied in clinical practice to aid in the evaluation of patients with PCoA aneurysms.
    Full-text · Article · Apr 2014 · PLoS ONE
  • Source
    • "These results were obtained from a cohort of aneurysms in a largely homogeneous location (ACoA or A1/A2 junction) with adjustment of patients’ demographic and clinical risk factors. These findings are mostly consistent with our own study of a large cohort of MCA aneurysms [16] and reaffirmed that geometric parameters of an intracranial aneurysm, measured from invasive or non-invasive vascular imaging, would usually describe one of three distinct aspects of the aneurysm hemodynamics: the morphology of the aneurysm itself, the interaction between the aneurysm and the associated parent and daughter vessels, and the relationship among the surrounding vasculature. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to size, the association of morphological characteristics of intracranial aneurysms with rupture has not been established in a systematic manner. We present an analysis of the morphological variables that are associated with rupture in anterior communicating artery aneurysms to determine site-specific risk variables. One hundred and twenty-four anterior communicating artery aneurysms were treated in a single institution from 2005 to 2010, and CT angiograms (CTAs) or rotational angiography from 79 patients (42 ruptured, 37 unruptured) were analyzed. Vascular imaging was evaluated with 3D Slicer© to generate models of the aneurysms and surrounding vasculature. Morphological parameters were examined using univariate and multivariate analysis and included aneurysm volume, aspect ratio, size ratio, distance to bifurcation, aneurysm angle, vessel angle, flow angle, and parent-daughter angle. Multivariate logistic regression revealed that size ratio, flow angle, and parent-daughter angle were associated with aneurysm rupture after adjustment for age, sex, smoking history, and other clinical risk factors. Simple morphological parameters such as size ratio, flow angle, and parent-daughter angle may thus aid in the evaluation of rupture risk of anterior communicating artery aneurysms.
    Full-text · Article · Nov 2013 · PLoS ONE
  • Source
    • "The geometrical as well as biophysical characteristics were also studied for the future prediction of cerebral aneurysm rupture and include but are not limited to three-dimensional diameter (D-max), aspect ratio, flow angle, parent-daughter angle, wall shear stress, and oscillatory shear index (OSI). However, none of these factors have been found to be superior to one another [21–23]. The predictors of aneurysm growth were also studied and included as a diameter of at least 10 mm and a location at the basilar artery (BA) bifurcation or the ICA [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Perioperative aneurysm rupture (PAR) is one of the most dreaded complications of intracranial aneurysms, and approximately 80% of nontraumatic SAHs are related to such PAR aneurysms. The literature is currently scant and even controversial regarding the issues of various contributory factors on different phases of perioperative period. Thus this paper highlights the current understanding of various risk factors, variables, and outcomes in relation to PAR and try to summarize the current knowledge. Method: We have performed a PubMed search (1 January 1991-31 December 2012) using search terms including "cerebral aneurysm," "intracranial aneurysm," and "intraoperative/perioperative rupture." Results: Various risk factors are summarized in relation to different phases of perioperative period and their relationship with outcome is also highlighted. There exist many well-known preoperative variables which are responsible for the highest percentage of PAR. The role of other variables in the intraoperative/postoperative period is not well known; however, these factors may have important contributory roles in aneurysm rupture. Preoperative variables mainly include natural course (age, gender, and familial history) as well as the pathophysiological factors (size, type, location, comorbidities, and procedure). Previously ruptured aneurysm is associated with rupture in all the phases of perioperative period. On the other hand intraoperative/postoperative variables usually depend upon anesthesia and surgery related factors. Intraoperative rupture during predissection phase is associated with poor outcome while intraoperative rupture at any step during embolization procedure imposes poor outcome. Conclusion: We have tried to create such an initial categorization but know that we cannot scale according to its clinical importance. Thorough understanding of various risk factors and other variables associated with PAR will assist in better clinical management as well as patient care in this group and will give insight into the development and prevention of such a catastrophic complication in these patients.
    Full-text · Article · Nov 2013 · The Scientific World Journal
Show more