Article

Cross-talk between HER2 and MED1 Regulates Tamoxifen Resistance of Human Breast Cancer Cells

Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio
Cancer Research (Impact Factor: 9.33). 09/2012; 72(21). DOI: 10.1158/0008-5472.CAN-12-1305
Source: PubMed

ABSTRACT

Despite the fact that most breast cancer patients have estrogen receptor (ER) α-positive tumors, up to 50% of the patients are or soon develop resistance to endocrine therapy. It is recognized that HER2 activation is one of the major mechanisms contributing to endocrine resistance. In this study, we report that the ER coactivator MED1 is a novel cross-talk point for the HER2 and ERα pathways. Tissue microarray analysis of human breast cancers revealed that MED1 expression positively correlates most strongly with HER2 status of the tumors. MED1 was highly phosphorylated, in a HER2-dependent manner, at the site known to be critical for its activation. Importantly, RNAi-mediated attenuation of MED1 sensitized HER2-overexpressing cells to tamoxifen treatment. MED1 and its phosphorylated form, but not the corepressors N-CoR and SMRT, were recruited to the ERα target gene promoter by tamoxifen in HER2-overexpressing cells. Significantly, MED1 attenuation or mutation of MED1 phosphorylation sites was sufficient to restore the promoter recruitment of N-CoR and SMRT. Notably, we found that MED1 is required for the expression of not only traditional E2-ERα target genes but also the newly described EGF-ERα target genes. Our results additionally indicated that MED1 is recruited to the HER2 gene and required for its expression. Taken together, these findings support a key role for MED1 in HER2-mediated tamoxifen resistance and suggest its potential usage as a therapeutic target to simultaneously block both ERα and HER2 pathways for the treatment of this type of endocrine resistant breast cancer. Cancer Res; 72(21); 1-10. ©2012 AACR.

Full-text preview

Available from: cancerres.aacrjournals.org
  • Source
    • "It is already known that MED1, TGFBR1 and DKK1 underexpression decreases migration of cells, (Larsson et al., 2001; Ohlmann et al., 2010; Cui et al., 2012; Li et al., 2013). In the IPA knowledge base analysis it is shown that those molecules are underexpressed which in turn diminish the migration of cells (Figure 7). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells.
    Full-text · Article · Jan 2016 · Frontiers in Physiology
    • "Data represent the mean ± SD of three independent experiments. The primers used to detect PAI-1, p21, p15, c-Myc and GAPDH were as described [24] [25] [26]. "

    No preview · Article · Aug 2015 · Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
  • Source
    • "Data represent the mean ± SD of three independent experiments. The primers used to detect PAI-1, p21, p15, c-Myc and GAPDH were as described [24] [25] [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway. Copyright © 2014. Published by Elsevier B.V.
    Full-text · Article · Dec 2014 · Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Show more