AGEING Mixed results for dieting monkeys

Barshop Institute for Longevity and Aging Studies, Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA.
Nature (Impact Factor: 41.46). 08/2012; 489(7415):210-11. DOI: 10.1038/nature11484
Source: PubMed


According to previous studies, a low-calorie diet provides health
benefits and increases lifespan in mammals, including primates. Yet a
long-term investigation in rhesus monkeys finds no effect on longevity.
See Letter p.318

1 Follower
17 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Dietary restriction (DR), typically a 20%-40% reduction in ad libitum or "normal" nutritional energy intake, has been reported to extend life span in diverse organisms, including yeast, nematodes, spiders, fruit flies, mice, rats, and rhesus monkeys. The magnitude of the life span enhancement appears to diminish with increasing organismal complexity. However, the extent of life span extension has been notoriously inconsistent, especially in mammals. Recently, Mattison et al. reported that DR does not extend life span in rhesus monkeys( 1 ) in contrast to earlier work of Colman et al.( 2 ) Examination of these papers identifies multiple potential confounding factors. Among these are the varied genetic backgrounds and composition of the "normal" and DR diets. In monkeys, the correlation of DR with increased health span is stronger than that seen with life span and indeed may be separable. Recent mechanistic studies in Drosophila( 3 ) implicate non-genetic co-factors such as level of physical activity and muscular fatty acid metabolism in the benefits of DR. These results should be followed up in mammals. Perhaps levels of physical activity among the cohorts of rhesus monkeys contribute to inconsistent DR effects. To understand the maximum potential benefits from DR requires differentiating fundamental effects on aging at the cellular and molecular levels from suppression of age-associated diseases, such as cancer. To that end, it is important that investigators carefully evaluate the effects of DR on biomarkers of molecular aging, such as mutation rate and epigenomic alterations. Several short-term studies show that humans may benefit from DR in as little as 6 months, by achieving lowered fasting insulin levels and improved cardiovascular health. Optimized health span engineering will require a much deeper understanding of DR.
    No preview · Article · Sep 2012 · Rejuvenation Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lactobacilli and bifidobacteria are probiotic bacteria that modify host defense systems and have the ability to extend the lifespan of the nematode Caenorhabditis elegans. Here, we attempted to elucidate the mechanism by which bifidobacteria prolong the lifespan of C. elegans. When the nematode was fed Bifidobacterium infantis (BI) mixed at various ratios with the standard food bacterium Escherichia coli strain OP50 (OP), the mean lifespan of worms was extended in a dose-dependent manner. Worms fed BI displayed higher locomotion and produced more offspring than control worms. The growth curves of nematodes were similar regardless of the amount of BI mixed with OP, suggesting that BI did not induce prolongevity effects through caloric restriction. Notably, feeding worms the cell wall fraction of BI alone was sufficient to promote prolongevity. The accumulation of protein carbonyls and lipofuscin, a biochemical marker of aging, was also lower in worms fed BI; however, the worms displayed similar susceptibility to heat, hydrogen peroxide, and paraquat, an inducer of free radicals, as the control worms. As a result of BI feeding, loss-of-function mutants of daf-16, jnk-1, aak-2, tol-1, and tir-1 exhibited a longer lifespan than OP-fed control worms, but BI failed to extend the lifespan of pmk-1, skn-1, and vhp-1 mutants. As skn-1 induces phase 2 detoxification enzymes, our findings suggest that cell wall components of bifidobacteria increase the average lifespan of C. elegans via activation of skn-1, regulated by the p38 MAPK pathway, but not by general activation of the host defense system via DAF-16.
    No preview · Article · Jan 2013 · Biogerontology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuins are NAD-dependent protein deacetylases known to have protective effects against age-related diseases such as cancer, diabetes, cardiovascular and neurodegenerative diseases. In mammals, there are seven sirtuins (SIRT1-7), which display diversity in subcellular localization and function. While SIRT1 has been extensively investigated due to its initial connection with lifespan extension and involvement in calorie restriction, important biological and therapeutic roles of other sirtuins have only recently been recognized. Here, we review the potential roles and effects of SIRT1 and SIRT2 in neurodegenerative diseases. We discuss different functions and targets of SIRT1 and SIRT2 in a variety of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's Disease (HD). We also cover the role of SIRT1 in neuronal differentiation due to the possible implications in neurodegenerative conditions, and conclude with an outlook on the potential therapeutic value of SIRT1 and SIRT2 in these disorders.
    Full-text · Article · Mar 2013 · EMBO Molecular Medicine
Show more