Early-life disruption of epigenetic marks may contribute to the origins of mental illness

Department of Psychiatry, University of Wisconsin - Madison, 6001 Research Park Boulevard, Madison, WI 53719, USA.
Epigenomics (Impact Factor: 4.65). 08/2012; 4(4):355-7. DOI: 10.2217/epi.12.35
Source: PubMed

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exposure to environmental endocrine disrupting compounds (EDC), as polychlorinated biphenyls (PCBs), widely diffused in the environment may produce epigenetic changes that affect the endocrine system. We found that PCBs activate AR transcriptional activity and that this effect is potentiated by the demethylase Jarid1b, a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by PCB. The aim of the present study was to investigate the effect of the treatment of cultured cells (HEK293) with a mixture of the most diffused environmental PCBs and, also with dihydrotestosterone (DHT), on the functional interaction between AR and Jarid1b. Although the effect induced by DHT on the AR transactivation was considerably higher, the PCB mixture produced an AR-mediated transactivation in a dose-dependent manner. Cotransfection with plasmids expressing Jarid1b and various AR isoforms containing polyglutamine tracts (polyQ tracts) of different lengths showed that Jarid1b potentiates the AR transcriptional activity induced by PCBs but only with the shortest AR isoform. The potentiating effect of Jarid1b on the AR is mediated by a direct interaction of the enzyme with the AR promoter. In fact, utilizing constructs containing AR promoters with a different length and a luciferase reporter gene, we showed that the effect of PCBs, but not of DHT, needs the presence of Jarid1b and of at least two DNA binding sites for Jarid1b.
    Full-text · Article · Aug 2013 · Epigenetics: official journal of the DNA Methylation Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Chronic psychological stress is associated with enhanced abdominal pain and altered intestinal barrier function that may result from a perturbation in the hypothalamic-pituitary-adrenal (HPA) axis. The glucocorticoid receptor (GR) exploits diverse mechanisms to activate or suppress congeneric gene expression, with regulatory variation associated with stress-related disorders in psychiatry and gastroenterology. PurposeDuring acute and chronic stress, corticotropin-releasing hormone drives secretion of adrenocorticotropic hormone from the pituitary, ultimately leading to the release of cortisol (human) and corticosterone (rodent) from the adrenal glands. Cortisol binds with the GR in the cytosol, translocates to the nucleus, and activates the NR3C1 (nuclear receptor subfamily 3, group C, member 1 [GR]) gene. This review focuses on the rapidly developing observations that cortisol is responsible for driving circadian and ultradian bursts of transcriptional activity in the CLOCK (clock circadian regulator) and PER (period circadian clock 1) gene families, and this rhythm is disrupted in major depressive disorder, bipolar disorder, and stress-related gastrointestinal and immune disorders. Glucocorticoid receptor regulates different sets of transcripts in a tissue-specific manner, through pulsatile waves of gene expression that includes occupancy of glucocorticoid response elements located within constitutively open spatial domains in chromatin. Emerging evidence supports a potentially pivotal role for epigenetic regulation of how GR interacts with other chromatin regulators to control the expression of its target genes. Dysregulation of the central and peripheral GR regulome has potentially significant consequences for stress-related disorders affecting the brain-gut axis.
    Preview · Article · Jan 2016 · Neurogastroenterology and Motility