ArticlePDF Available

Multiple factors influence west nile virus seroprevalence in wild mammals

Authors:

Abstract and Figures

We examined West Nile virus (WNV) seroprevalence in wild mammals along a forest-to-urban gradient in the US mid-Atlantic region. WNV antibody prevalence increased with age, urbanization, and date of capture for juveniles and varied signifi cantly between species. These fi ndings suggest several requirements for using mammals as indicators of transmission.
Content may be subject to copyright.
A preview of the PDF is not available
... Evidence for the importance of Cx. pipiens mosquitoes in the transmission of WNV comes from the large number of virus isolations from field collected individuals ( Andreadis et al., 2004;Lukacik et al., 2006), their moderately efficient vector competence for WNV ( Sardelis et al., 2001;Tiawsirisup et al., 2005;Turell et al., 2005), their abundance in urban environments ( Andreadis et al., 2004;Kilpatrick et al., 2005;Lukacik et al., 2006;Ruiz et al., 2010;Savage et al., 2006), their mixed host feeding behavior ( Apperson et al., 2004;Hamer et al., 2008;Kilpatrick et al., 2006b), their ability to vertically pass the virus from an infected female to her offspring ( Dohm et al., 2002), and their capacity to serve as an overwintering reservoir of WNV ( Farajollahi et al., 2005;Nasci et al., 2001). In addition, their higher abundance in urban environments has been hypothesized as a key factor in increasing WNV transmission rates in urbanized areas ( Bowden et al., 2011;Brown et al., 2008;Gomez et al., 2008). ...
Article
Full-text available
The transmission of vector-borne pathogens is greatly influenced by the ecology of their vector, which is in turn shaped by genetic ancestry, the environment, and the hosts that are fed on. One group of vectors, the mosquitoes in the Culex pipiens complex, play key roles in the transmission of a range of pathogens including several viruses such as West Nile and St. Louis encephalitis viruses, avian malaria (Plasmodium spp.), and filarial worms. The Cx. pipiens complex includes Culex pipiens pipiens with two forms, pipiens and molestus, Culex pipiens pallens, Culex quinquefasciatus, Culex australicus, and Culex globocoxitus. While several members of the complex have limited geographic distributions, Cx. pipienspipiens and Cx. quinquefasciatus are found in all known urban and sub-urban temperate and tropical regions, respectively, across the world, where they are often principal disease vectors. In addition, hybrids are common in areas of overlap. Although gaps in our knowledge still remain, the advent of genetic tools has greatly enhanced our understanding of the history of speciation, domestication, dispersal, and hybridization. We review the taxonomy, genetics, evolution, behavior, and ecology of members of the Cx. pipiens complex and their role in the transmission of medically important pathogens. The adaptation of Cx. pipiens complex mosquitoes to human-altered environments led to their global distribution through dispersal via humans and, combined with their mixed feeding patterns on birds and mammals (including humans), increased the transmission of several avian pathogens to humans. We highlight several unanswered questions that will increase our ability to control diseases transmitted by these mosquitoes.
... multiple (5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20) egg rafts that were combined as larvae after they were identified as Cx. pipiens or Cx. ...
Article
Full-text available
Vector competence, the probability that a vector will transmit a pathogen after feeding on an infected host, is known to vary among vector species, populations, days since feeding, and temperature during the extrinsic incubation period. However, the extent of spatio-temporal variability and consistency in vector competence of populations is not known. We examined vector competence of Culex pipiens Linnaeus and Cx. restuans Theobald mosquitoes for West Nile virus collected over 3 years from 17 sites to measure spatial and temporal scales of variation in vector competence. We found extreme variation with 0-52% of mosquitoes transmitting West Nile virus at a single site between different sampling periods, and similar variation across populations. However, we also found that within a smaller geographic range, vector competence varied somewhat synchronously, suggesting that environmental and population genetic factors might influence vector competence. These results highlight the spatio-temporal variability in vector competence and the role of local processes.
Article
Full-text available
The Chesapeake Bay is the largest estuary in the United States, encompassed by a water-shed extending 168,000 km 2 over portions of six states and Washington, D.C. Restoration of the Bay has been the focus of a two-decade regional partnership of local, state and fed-eral agencies, including a network of scientists, politicians and activists interacting through various committees, working groups, and advisory panels. The effectiveness of the restora-tion effort has been mixed, with both notable successes and failures. The overall health of the Bay has not declined since the restoration was initiated in 1983, but many of the advances have been offset by the pressure of increasing population and exurban sprawl across the watershed. The needs of the Chesapeake Bay Program are many, but the greatest is accurate information on land cover and land use change, primarily to assess the implications for water quality, examine various restoration scenarios, and calibrate spatial models of the urbanization process. We report here on a number of new land cover and land use data prod-ucts, and associated applications to assist vulnerability assessment, integrated ecosystem analysis, and ultimately Bay restoration. We provide brief overviews of applications to model new residential development, assess losses and vulnerability of resource lands, and identify the factors that disrupt the health of streams in small watersheds. These data products and approaches are being applied by a number of agencies involved with the restoration effort, including the Chesapeake Bay Program's activities focused on living resources, water qual-ity, and sound land use.
Article
Full-text available
Tree squirrels (Sciurus spp.) have been recently shown to be commonly exposed to West Nile virus (WNV). Many characteristics of WNV infections in tree squirrels are unknown. To better understand WNV associations in fox squirrels (S. niger), we conducted mark-recapture sampling (N = 72) and radio telemetry to study the longitudinal seroprevalence, seroconversions, and ectoparasites of these animals during 2005-2006 in northern Colorado. Five seroconversions were documented during this study. The majority of seroconversions occurred during the late summer/fall months. However, one seroconversion was documented over the time period of February to late March 2005. Fleas (Orchopeas howardi) were tested for WNV RNA using real-time PCR techniques. No WNV RNA positive fleas (N = 33) were detected. In addition, urine samples (N = 17) opportunistically collected from fox squirrels were negative for WNV RNA. Results indicate that seroconversions can be observed in fox squirrels during low WNV transmission years.
Article
Full-text available
Two hundred and ten isolations of West Nile virus (WNV) were obtained from 17 mosquito species in six genera in statewide surveillance conducted in Connecticut from June through October, 1999-2003. Culex pipiens (86), Culex salinarius (32), Culex restuans (26), Culiseta melanura (32), and Aedes vexans (12) were implicated as the most likely vectors of WNV in the region based on virus isolation data. Culex pipiens was abundant from July through September and is likely involved in early season enzootic transmission and late season epizootic amplification of the virus in wild bird populations. Epidemic transmission of WNV to humans in urban locales is probable. The abundance of Cx. restuans in June and July and isolations of WNV in early July suggest that this species may play an important role as an enzootic vector involved in early amplification of WNV virus among wild birds. Its involvement as a bridge vector to humans is unlikely. Culex salinarius was the most frequently captured Culex species and was abundant in August and September when virus activity was at its height. Frequent isolations of WNV from this species in September when the majority of human cases were reported in union with its abundance at this time of the year, demonstrated vector competence, and broad feeding habits, make Cx. salinarius a likely bridge vector to humans, horses and other mammals. Multiple isolations WNV from Cs. melanura collected in more rural locales in late August and September, provide supportive evidence to suggest that this predominant avian feeder may play a significant role in epizootic amplification of the virus among wild bird populations in these environs. Aedes vexans was the only species of Aedes or Ochlerotatus from which multiple isolations of WNV were made in more than one year and was among the most frequently trapped and abundant species throughout the season. Since Ae. vexans predominately feeds on mammals it is unlikely to play a significant role in epizootic amplification of WNV, however, because of its abundance and aggressive mammalian and human biting behavior it must receive strong consideration as a bridge vector to humans and horses. The occasional virus isolations obtained from Aedes cinereus (4), Uranotaenia sapphirina (3), Ochlerotatus canadensis (2), Ochlerotatus trivittatus (2), Ochlerotatus sollicitans (2), Ochlerotatus sticticus (2), Psorophora ferox (2), Anopheles punctipennis, Anopheles walkeri, Ochlerotatus cantator, Ochlerotatus taeniorhynchus, and Ochlerotatus triseriatus in conjunction with their inefficient vector competency and host feeding preferences indicate that these species likely play a very minor role in either the enzootic maintenance or epizootic transmission of WNV in this region. The principal foci of WNV activity in Connecticut were identified as densely populated (>3,000 people/mi2) residential communities in coastal Fairfield and New Haven Counties, and in the case of 2002, similar locales in proximity of the city of Hartford in central Hartford County. In almost all instances we observed a correlation both temporally and spatially between the isolation of WNV from field-collected mosquitoes and subsequent human cases in these locales. In most years the incidence of human cases closely paralleled the number of virus isolations made from mosquitoes with both peaks falling in early September. We conclude that the isolation of WNV from field-collected mosquitoes is a sensitive indicator of virus activity that is associated with the risk of human infection that habitually extends from early August through the end of October in Connecticut.
Article
Full-text available
In the northeast United States, control of West Nile virus (WNV) vectors has been unfocused because of a lack of accurate knowledge about the roles different mosquitoes play in WNV transmission. We analyzed the risk posed by 10 species of mosquitoes for transmitting WNV to humans by using a novel risk-assessment measure that combines information on the abundance, infection prevalence, vector competence, and biting behavior of vectors. This analysis suggests that 2 species (Culex pipiens L. and Cx. restuans Theobald [Diptera: Cilicidae]) not previously considered important in transmitting WNV to humans may be responsible for up to 80% of human WNV infections in this region. This finding suggests that control efforts should be focused on these species which may reduce effects on nontarget wetland organisms. Our risk measure has broad applicability to other regions and diseases and can be adapted for use as a predictive tool of future human WNV infections.
Article
Full-text available
Serosurveys were conducted to obtain flavivirus and West Nile virus (WNV) seroprevalence data from mammals. Sera from 513 small- and medium-sized mammals collected during late summer and fall 2003 from Colorado, Louisiana, New York, Ohio, and Pennsylvania were screened for flavivirus-specific antibodies. Sera samples containing antibody to flaviviruses were screened for WNV-specific antibodies by epitope-blocking enzyme-linked immunosorbent assays and confirmed with plaque reduction neutralization tests. Prevalence of WNV antibodies among study sites ranged from 0% to 42.8% among the mammal communities sampled. High prevalence rates for WNV were noted among raccoons (100%, with a very small sample size, N = 2), Virginia opossums (50.0%), fox squirrels (49.1%), and eastern gray squirrels (48.3%). The high WNV antibody prevalence noted for tree squirrels, the peri-domestic tendencies of several of these species, and their ease of observation could make these species useful sentinels for monitoring WNV activity within urban communities.
Article
Full-text available
After an outbreak of West Nile virus (WNV) infections in Slidell, Louisiana, in 2002, we detected neutralizing antibodies to WNV in 13 of 120 mammals, representing five of six species sampled. Seroprevalence was measured in opossum, Didelphis virginiana (75%, n = 8), raccoons, Procyon lotor (60%, n = 5), black rats, Rattus rattus (6%, n = 36), hispid cotton rats, Sigmodon hispidus (4%, n = 24), and eastern gray squirrels, Sciurus carolinensis (2%, n = 43).
Article
Full-text available
West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans.
Article
Full-text available
To evaluate the role of Culex mosquitoes as enzootic and epidemic vectors for WNV, we identified the source of vertebrate blood by polymerase chain reaction amplification and sequencing portions of the cytochrome b gene of mitochondrial DNA. All Cx. restuans and 93% of Cx. pipiens acquired blood from avian hosts; Cx. salinarius fed frequently on both mammals (53%) and birds (36%). Mixed-blood meals were detected in 11% and 4% of Cx. salinarius and Cx. pipiens, respectively. American robin was the most common source of vertebrate blood for Cx. pipiens (38%) and Cx. restuans (37%). American crow represented <1% of the blood meals in Cx. pipiens and none in Cx. restuans. Human-derived blood meals were identified from 2 Cx. salinarius and 1 Cx. pipiens. Results suggest that Cx. salinarius is an important bridge vector to humans, while Cx. pipiens and Cx. restuans are more efficient enzootic vectors in the northeastern United States.
Article
Full-text available
Heterogeneity in host populations and communities can have large effects on the transmission and control of a pathogen. In extreme cases, a few individuals give rise to the majority of secondary infections, which have been termed super spreading events. Here, we show that transmission of West Nile virus (WNV) is dominated by extreme heterogeneity in the host community, resulting in highly inflated reproductive ratios. A single relatively uncommon avian species, American robin (Turdus migratorius), appeared to be responsible for the majority of WNV-infectious mosquitoes and acted as the species equivalent of a super spreader for this multi-host pathogen. Crows were also highly preferred by mosquitoes at some sites, while house sparrows were significantly avoided. Nonetheless, due to their relative rarity, corvids (crows and jays) were relatively unimportant in WNV amplification. These results challenge current beliefs about the role of certain avian species in WNV amplification and demonstrate the importance of determining contact rates between vectors and host species to understand pathogen transmission dynamics.
Article
The recently established virus family Flaviviridae contains at least 68 recognized members. Sixty-six of these viruses were tested by cross-neutralization in cell cultures. Flaviviruses were separated into eight complexes [tick-borne encephalitis (12 viruses), Rio Bravo (six), Japanese encephalitis (10), Tyuleniy (three), Ntaya (five), Uganda S (four), dengue (four) and Modoc (five)] containing 49 viruses; 17 other viruses were not sufficiently related to warrant inclusion in any of these complexes.