Role of Plasminogen Activator Inhibitor-1 in Urokinase's Paradoxical In Vivo Tumor Suppressing or Promoting Effects

University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1475 NW 12th Avenue, Suite 3400, Miami, FL 33136. .
Molecular Cancer Research (Impact Factor: 4.38). 08/2012; 10(10):1271-81. DOI: 10.1158/1541-7786.MCR-12-0145
Source: PubMed


Tumor proteases and inhibitors have been associated with paradoxical effects on tumor progression in preclinical and clinical settings. We previously reported that urokinase (uPA) overexpression delays tumor progression in mammary cancer. This study aimed to determine the role of plasminogen activator inhibitor-1 (PAI-1) on uPA's paradoxical in vivo effects. Using syngeneic murine models, we found that stable uPA overexpression promoted in vivo growth of colon tumors (MC-38) naturally expressing high PAI-1, whereas growth inhibition was observed in renal tumors (RENCA) expressing lower PAI-1 levels. In murine mammary carcinoma (4T1), uPA overexpression shifted the uPA/PAI-1 balance in favor of the protease, resulting in significantly reduced tumor growth and metastases in vivo. Conversely, increased tumor progression was observed in stable PAI-1 overexpressing 4T1 tumors as compared with uPA-overexpressing and control tumors. These effects were associated with downregulation of metastases promoting genes in uPA-overexpressing tumors, such as metalloproteinases, CXCL-1, c-Fos, integrin α-5, VEGF-A, PDGF-α, and IL-1β. In PAI-1-overexpressing tumors, many of the above genes were upregulated. PAI-1 overexpressing tumors had increased total and new tumor microvessels, and increased tumor cell proliferation, whereas the opposite effects were found in uPA-overexpressing tumors. Finally, PAI-1 downregulation led to significant inhibition of 4T1 tumor growth and metastases in vivo. In conclusion, uPA's dual effects on tumor progression occur in the context of its interactions with endogenous PAI-1 expression. Our studies uncover novel mechanisms of in vivo tumor control by modulation of the balance between tumor proteases and inhibitors, which may be exploited therapeutically. Mol Cancer Res; 10(10); 1271-81. ©2012 AACR.

Download full-text


Available from: Krisztina Kovacs
  • Source
    • "Breast and prostate cancer metastases are also closely associated with SERPINB5 [60,61]. In addition, SERPINE1 appears to have a role in tumor progression [62] and metastasis [63]. Further, SERPINI2 may play a possible role in breast and pancreatic cancer metastasis [49]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The serpin family comprises of a structurally similar, yet functionally diverse, set of proteins. Named originally for their function as serine proteinase inhibitors, many of its members are not inhibitors but rather chaperones, involved in storage, transport, and other roles. Serpins are found in genomes of all kingdoms, with 36 human protein-coding genes and five pseudogenes. The mouse has 60 Serpin functional genes, many of which are orthologous to human SERPIN genes and some of which have expanded into multiple paralogous genes. Serpins are found in tissues throughout the body; whereas most are extracellular, there is a class of intracellular serpins. Serpins appear to have roles in inflammation, immune function, tumorigenesis, blood clotting, dementia, and cancer metastasis. Further characterization of these proteins will likely reveal potential biomarkers and therapeutic targets for disease.
    Full-text · Article · Oct 2013 · Human genomics
  • Source
    • "e l s e v i e r . c o m / l o c a t e / y e x m p over-expression promoted in vivo growth of colon tumors naturally expressing high PAI-1, whereas growth inhibition was observed in renal tumors expressing lower PAI-1 levels (Jing et al., 2012). Prostate cancer patients with high expression of PAI-1, uPA, and uPA receptor were characterized as having a significantly shorter biochemical recurrence-free survival in comparison to patients with a weak expression of these genes (Gupta et al., 2009; Kumano et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA) play a crucial role in cancer progression. In the present study we examined the regulation of PAI-1 and uPA expressions in normal prostate epithelial cells (PrEC) and the prostate cancer cell lines LNCaP, DU-145, and PC-3. The antigen and mRNA levels of PAI-1 were down-regulated in cancer cells, especially in LNCaP and DU-145. In the presence of proinflammatory cytokines, an increase of PAI-1 mRNA levels was observed in PrEC, LNCaP and PC-3, but not in DU-145 cells. Treatment with demethylating agent, 5-aza-2´-deoxycytidine increased the level of PAI-1 transcript in DU-145 cells and restored the inducing effect of cytokines on PAI-1 expression. An aberrant methylation of PAI-1 promoter in DU-145 and LNCaP cells was shown by methylation-sensitive high resolution melting (MS-HRM) analysis. PAI-1 methylation was also significantly increased in tumor samples (23.2±1.7%) in comparison to adjacent non-tumor tissue (6.0±0.8%). Furthermore, the expression of uPA was increased in high invasive cell lines DU-145 and PC-3 in comparison to PrEC and low invasive LNCaP cells. MS-HRM analysis revealed aberrant methylation of uPA promoter in LNCaP cells, but not in PrEC, DU-145 and PC-3 cells, as well as in normal and prostate cancer tissue samples. In conclusion, the study shows that PAI-1 and uPA expression was changed in opposite directions in high invasive prostate cancer cell lines resulting in a strong decrease of PAI-1/uPA ratio, which may indicate a shift towards proteolytic activities. Methylation of the PAI-1 gene is suggested as one of the molecular mechanisms involved in the cancer-associated down-regulation of the PAI-1 expression.
    Full-text · Article · Mar 2013 · Experimental and Molecular Pathology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The expression of several components of the plasminogen-plasmin (P-P) system in tumor tissues has been shown to have prognostic significance in many human cancers, including those of the breast, prostate, lung, brain, ovary, stomach, colon, rectum, oral cavity, kidney, and bone. Mechanisms of action of the individual components have been extensively studied in tumor cells in vitro and in animal models. By interrupting various putative pathways involved in tumor progression in several experimental tumor models in animals, varying degrees of tumor control have been achieved. However, these efforts have thus far not been able to exert any impact in oncologic clinical practice. A possible explanation is our incomplete understanding of the complex involvement of the P-P system and its interactions with other tumorigenic factors. In this article, the role of various members of the P-P system in cancer is reviewed. Proteolysis via the urokinase-type plasminogen activator-plasminogen activation pathway tends to enhance tumor growth and invasion, and its natural inhibitor plasminogen activator inhibitor type 1 may also enhance tumor growth through the inhibition of apoptosis, enhancing cell proliferation and the promotion of angiogenesis. Meaningful drug designs for therapeutic intervention require a thorough understanding of the role of all of the components involved in this complex mechanism of tumor progression.
    No preview · Article · Mar 2013 · Seminars in Thrombosis and Hemostasis
Show more

Similar Publications