Article

Nicotine Receptor Subtype-Specific Effects on Auditory Evoked Oscillations and Potentials

Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
PLoS ONE (Impact Factor: 3.23). 07/2012; 7(7):e39775. DOI: 10.1371/journal.pone.0039775
Source: PubMed

ABSTRACT

Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity.

Download full-text

Full-text

Available from: Edwin Carl Johnson
  • Source
    • "Nicotine may also be a confounding factor. Nicotine has been shown to enhance auditory evoked gamma activity (Featherstone et al. 2012 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Electroencephalography and magnetoencephalography (MEG) studies have identified alterations in gamma-band (30-80 Hz) cortical activity in schizophrenia and mood disorders, consistent with neural models of disturbed glutamate (and GABA) neuron influence over cortical pyramidal cells. Genetic evidence suggests specific deficits in GABA-A receptor function in schizoaffective bipolar disorder (SABP), a clinical syndrome with features of both bipolar disorder and schizophrenia. This study investigated gamma oscillations in this under-researched disorder. Method: MEG was used to measure induced gamma and evoked responses to a visual grating stimulus, known to be a potent inducer of primary visual gamma oscillations, in 15 individuals with remitted SABP, defined using Research Diagnostic Criteria, and 22 age- and sex-matched healthy controls. Results: Individuals with SABP demonstrated increased sustained visual cortical power in the gamma band (t 35 = -2.56, p = 0.015) compared to controls. There were no group differences in baseline gamma power, transient or sustained gamma frequency, alpha band responses or pattern onset visual-evoked responses. Conclusions: Gamma power is increased in remitted SABP, which reflects an abnormality in the cortical inhibitory-excitatory balance. Although an interaction between gamma power and medication can not be ruled out, there were no group differences in evoked responses or baseline measures. Further work is needed in other clinical populations and at-risk relatives. Pharmaco-magnetoencephalography studies will help to elucidate the specific GABA and glutamate pathways affected.
    Full-text · Article · Aug 2014 · Psychological Medicine
  • Source
    • "Possible role of nAChR-α4β2 in P100 generation is also indirectly supported by the animal studies. These studies have shown that modulation of α4β2-nAChR activation in mice does not influence the magnitude of hippocampal P20—the human analog of P50—but affects the amplitude of the component succeeding P20 (hippocampal N40) (Rudnick et al., 2009; Featherstone et al., 2012). There is convincing evidence in the literature that nAChR stimulation mainly affects the attention reorienting network of the right hemisphere. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Auditory sensory modulation difficulties and problems with automatic re-orienting to sound are well documented in autism spectrum disorders (ASD). Abnormal preattentive arousal processes may contribute to these deficits. Objectives: We investigated in children with ASD the link between ‘obligatory’ components of the cortical auditory evoked potential (CAEP) reflecting preattentive arousal and auditory sensory modulation difficulties. Methods: Nineteen boys with ASD and nineteen typically developing (TD) boys aged 3-8 years participated in the study. Pairs of clicks (‘S1’ and ‘S2’) separated by a 1 sec S1-S2 interstimulus interval (ISI) and much longer (8-10 sec) S1-S1 ISIs were presented monaurally to either the left or right ear. Results: In TD children, the P50, P100 and N1c CAEP components were strongly influenced by temporal novelty of clicks and were much greater in response to the S1 than the S2 click. Irrespective of the stimulation side, the ‘tangential’ P100 component was rightward lateralized in TD children, whereas the ‘radial’ N1c component had higher amplitude contralaterally to the stimulated ear. Compared to the TD children, children with ASD demonstrated 1) reduced amplitude of the P100 component under the condition of temporal novelty (S1) and 2) an attenuated P100 repetition suppression effect. The abnormalities were lateralized and depended on the presentation side. They were evident in the case of the left but not the right ear stimulation. The P100 abnormalities in ASD correlated with the degree of developmental delay and with the severity of auditory sensory modulation difficulties observed in early life. Conclusions: The results suggest that some rightward-lateralized brain networks that are crucially important for arousal and attention re-orienting are compromised in children with ASD and that this deficit contributes to sensory modulation difficulties and possibly even other behavioral deficits in ASD.
    Full-text · Conference Paper · May 2014
  • Source
    • "Possible role of nAChR-α4β2 in P100 generation is also indirectly supported by the animal studies. These studies have shown that modulation of α4β2-nAChR activation in mice does not influence the magnitude of hippocampal P20—the human analog of P50—but affects the amplitude of the component succeeding P20 (hippocampal N40) (Rudnick et al., 2009; Featherstone et al., 2012). There is convincing evidence in the literature that nAChR stimulation mainly affects the attention reorienting network of the right hemisphere. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The extended phenotype of autism spectrum disorders (ASD) includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs) and magnetic fields (ERFs) may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response-automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN), and evaluation of stimulus novelty, indexed by P3a component,-found in individuals with ASD either increased, decreased, or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, "sensory gating" studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants "at risk" who can potentially benefit from particular types of therapies or interventions.
    Full-text · Article · Feb 2014 · Frontiers in Human Neuroscience
Show more