Article

Toxicity of High Salinity Tannery Wastewater and Effects on Constructed Wetland Plants

CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Dr António Bernardino de Almeida, Porto, Portugal.
International Journal of Phytoremediation (Impact Factor: 1.74). 08/2012; 14(7):669-80. DOI: 10.1080/15226514.2011.619233
Source: PubMed

ABSTRACT

The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted effluent caused a complete germination inhibition. Constructed wetlands (CWs) with Arundo donax or Sarcocornia fruticosa were envisaged to further polish this wastewater. Selection of plant species to use in CWs for industrial wastewater treatment is an important issue, since for a successful establishment they have to tolerate the often harsh wastewater composition. For that, the effects of this wastewater on the growth of Arundo and Sarcocornia were assessed in pot assays. Plants were subject to different wastewater contents (0/50/100%), and both were resilient to the imposed conditions. Arundo had higher growth rates and biomass than Sarcocornia and may therefore be the preferred species for use in CWs treating tannery wastewater. CWs planted with the above mentioned plants significantly decreased the toxicity of the wastewater, as effluent from the CWs outlet stimulated the growth of Trifolium at concentrations <50%, and seed germination and growth even occurred in undiluted effluent.

Download full-text

Full-text

Available from: Hans Brix
  • [Show abstract] [Hide abstract]
    ABSTRACT: A Life Cycle Impact Assessment (LCIA) method was developed to evaluate the environmental impacts associated with salinity on biodiversity in a Spanish coastal wetland. The developed characterization factor consists of a fate and an effect factor and equals 3.16x10-1± 1.84x10-1PAF•m3•yr•m-3(PAF: Potentially Affected Fraction of species) indicating a "potential loss of 0.32 m3 ecosystem" for a water consumption rate of 1m3yr-1. As a result of groundwater consumption with a rate of 1 m3 per year the PAF in the lost cubic meter of ecosystem equals 0.05, which has been proposed as the maximum tolerable effect to keep the ecosystem intact. The fate factor was calculated from seasonal water balances of the wetland Albufera de Adra. The effect factor was obtained from the fitted curve of the potentially affected fraction of native wetland species due to salinity and can be applied to other wetlands with similar species composition. In order to test the applicability of the characterization factor, an assessment of water consumption of greenhouse crops in the area was conducted as a case study. Results converted into ecosystem quality damage using the ReCiPe method were compared to other categories. While tomatoes are responsible for up to 30 % of the impact of increased salinity due to water consumption on ecosystem quality in the studied area, melons have the largest impact per tonne produced.
    No preview · Article · Apr 2013 · Environmental Science & Technology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wastewaters from tannery industry are complex in composition and providing adequate treatment can be difficult. Constructed wetlands (CW) are regarded as an alternative treatment to the conventional biological systems, as a developing cost-effective and environmentally friendly phytoremediation technology. The present review compiles and integrates information on CWs technology for the needs of the tannery sector. The following issues arise as crucial for the implementation of such systems, namely i) an accurate wastewater characterization and an effective pretreatment before reaching the CW, ii) choosing the plants species better adapted to the imposed conditions, iii) substrate selection and iv) range of organic loadings applied. The examples practiced in Portugal give indication that horizontal subsurface flow systems, with expanded clay media, are a suitable option to be considered when dealing with high organic loading tannery wastewater (up to c.a. 3800 kgCODha(-1)d(-1)), being resilient to a wide range of hydraulic variations. Plants such as Phragmites and Typha have shown to be adequate for tannery wastewater depuration, with Arundo donax proving resilient to high salinity wastewaters. The flexibility of implementation allows the CW to be adapted to different sites with different configurations, being suitable as main secondary or tertiary treatment stage.
    No preview · Article · Jan 2014 · International Journal of Phytoremediation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants and associated microorganisms are used to remediate anthropogenic metal(loid) contamination of water, soils and sediments. This review focuses on the potential of Arundo donax L. (Giant reed) for alleviating risks due to soils, water, and sediments contaminated by trace elements (TE), with emphasis on its advantages and limits over macrophytes and perennial grasses used for bioenergy and plant-based feedstock. Arundo donax is relevant to phytomanage TE-contaminated matrices, notably in its native area, as it possesses characteristics of large biomass production even under nutrient and abiotic stresses, fast growth rate, TE tolerance and accumulation mainly in belowground plant parts. Cultivating A. donax on contaminated lands and in constructed wetlands can contribute to increase land availability and limit the food vs. plant-based feedstock controversy. To gain more tools for decision-taking and sustainable management, further researches on A. donax should focus on: interactions between roots, TE exposure, and rhizosphere and endophytic microorganisms; biomass response to (a)biotic factors; sustainable agricultural practices on marginal and contaminated land; integration into local, efficient, energy and biomass conversion chains with concern to biomass quality and production; Life-Cycle Assessment including contaminant behavior, as well as environmental, agricultural and socio-economic benefits and drawbacks.
    Full-text · Article · Feb 2014 · International Journal of Phytoremediation
Show more