Up-regulation of FXR isoforms is not required for stimulation of the expression of genes involved in the lack of response of colon cancer to chemotherapy

Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Spain.
Pharmacological Research (Impact Factor: 4.41). 08/2012; 66(5):419-27. DOI: 10.1016/j.phrs.2012.07.005
Source: PubMed


Several mechanisms are involved in the poor response of colorectal adenocarcinoma (CRAC) to pharmacological treatment. Since preliminary evidences have suggested that the enhanced expression of farnesoid X receptor (FXR) results in the stimulation of chemoresistance, we investigated whether FXR up-regulation is required for the expression of genes that characterize the multidrug resistance (MDR) phenotype of CRAC. Samples of tumours and adjacent healthy tissues were collected from naive patients. Using Taqman Low-Density Arrays, the abundance of mRNA of 87 genes involved in MDR was determined. Relevant changes were re-evaluated by conventional RT-QPCR. In healthy tissue the major FXR isoforms were FXRα2(+/-) (80%). In tumours this predominance persisted (91%) but was accompanied by a consistent reduction (3-fold) in total FXR mRNA. A lower FXR expression was confirmed by immunostaining, in spite of which there was a significant change in the expression of MDR genes. Pharmacological challenge was simulated "in vitro" using human CRAC cells (LS174T cells). Short-term (72h) treatment with cisplatin slightly increased the almost negligible expression of FXR in wild-type LS174T cells, whereas long-term (months) treatment induced a cisplatin-resistant phenotype (LS174T/R cells), which was accompanied by a 350-fold up-regulation of FXR, mainly FXRα1(+/-). However, the changed expression of MDR genes in LS174T/R cells was not markedly affected by incubation with the FXR antagonist Z-guggulsterone. In conclusion, although the enhanced expression of FXR may be involved in the stimulation of chemoresistance that occurs during pharmacological treatment, FXR up-regulation is not required for the presence of the MDR phenotype characteristic of CRAC.

15 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The farnesoid X receptor (FXR) is a key sensor in bile acid homeostasis. Although four human FXR isoforms have been identified, the physiological role of this diversity is poorly understood. Here we investigated their subcellular localization, agonist sensitivity and response of target genes. Measurement of mRNA revealed that liver predominantly expressed FXRα1(+/-), whereas FXRα2(+/-) were the most abundant isoforms in kidney and intestine. In all cases, the proportion of FXRα(1/2)(+) and FXRα(1/2)(-) isoforms, i.e., with and without a 12bp insert, respectively, was approximately 50%. When FXR was expressed in liver and intestinal cells the magnitude of the response to GW4064 and bile acids differs among FXR isoforms. In both cell types the strongest response was that of FXRα1(-). Different efficacy of bile acids species to activate FXR was found. The four FXR isoforms shared the order of sensitivity to bile acids species. When in FXR-deficient cells FXR was transfected, unconjugated, but not taurine- and glycine-amidated bile acids, were able to activate FXR. In contrast, human hepatocytes and cell lines showing an endogenous expression of FXR were sensitive to both unconjugated and conjugated bile acids. This suggests that to activate FXR conjugated, but not unconjugated, bile acids require additional component(s) of the intracellular machinery not related with uptake processes, which are missing in some tumor cells. In conclusion, cell-specific pattern of FXR isoforms determine the overall tissue sensitivity to FXR agonists and may be involved in the differential response of FXR target genes to FXR activation.
    No preview · Article · Aug 2013 · Biochemical pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the past two decades have witnessed a significant increase in the number of studies investigating effects of estrogenic chemicals on amphibians, to date little is known about specific molecular interactions of estrogens with the hypothalamus-pituitary-gonadal-hepatic axis in developing amphibians. Here, tissue-specific functional sets of genes, derived previously from studies of fishes exposed to endocrine active chemicals, were evaluated in Xenopus laevis exposed to 17α-ethynylestradiol (EE2) throughout their early development. Specifically, transcriptional responses of X. laevis exposed to 0.09, 0.84, or 8.81 µg EE2/L were characterized during sexual differentiation [31 day post hatch (dph)] and after completion of metamorphosis during the juvenile stage (89 dph). While at 31 dph there were no consistent effects of EE2 on abundances of transcripts,at 89 dph X. laevis exhibited significant alterations in expression of genes involved in steroid signaling and metabolism, synthesis of cholesterol, and vitellogenesis. Specifically, expression of androgen receptor, farnesyl diphosphate synthase, estrogen receptor α, and vitellogenin A2 was significantly greater (>2-fold) than in controls while expression of farnesoid x-activated receptors α and β was significantly less (>2-fold reduction) than in controls. These results support the hypothesis that sets of genes derived from studies in teleost fish can be extrapolated for use in amphibians during the juvenile stage but not in sexually undifferentiated individuals. Furthermore, changes in abundances of transcripts of the here utilized sets of genes in animals sampled post sexual differentiation were in accordance with developmental effects and alterations of gonadal histology reported in a parallel study. This set of genes might be useful for predicting potential adverse outcomes at later life-stages.
    Full-text · Article · Nov 2014 · Ecotoxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXRα1-4. Although these isoforms show differences in spatial and temporal expression patterns as well as in transcriptional activity, the physiological relevance hereof has remained elusive. We have evaluated specific roles of hepatic FXRα2 and FXRα4 by stably expressing these isoforms using liver-specific self-complementary adeno-associated viral vectors in total body FXR knock-out mice. The hepatic gene expression profile of the FXR knock-out mice was largely normalized by both isoforms. Yet, differential effects were also apparent; FXRα2 was more effective in reducing elevated HDL levels and transrepressed hepatic expression of Cyp8b1, the regulator of cholate synthesis. The latter coincided with a switch in hydrophobicity of the bile salt pool. Furthermore, FXRα2-transduction caused an increased neutral sterol excretion compared to FXRα4 without affecting intestinal cholesterol absorption. Our data show, for the first time, that hepatic FXRα2 and FXRα4 differentially modulate bile salt and lipoprotein metabolism in mice.
    Full-text · Article · Dec 2014 · PLoS ONE
Show more