A combined proteomic and genetic analysis of the highly variable platelet proteome: From plasmatic proteins and SNPs

Institute of Physiology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
Journal of proteomics (Impact Factor: 3.89). 08/2012; 75(18):5848-60. DOI: 10.1016/j.jprot.2012.07.042
Source: PubMed


High biological variation in protein expression represents a major challenge in clinical proteomics. In a study based on 2D-DIGE, we found that the standardised abundance of only a few proteins varied by more than 50%. While some of the highest variable proteins in platelets of 52 healthy elderly were of plasmatic origin, such as albumin or haptoglobin, absence of several other high-abundant plasma proteins strongly suggests that plasma-derived proteins represent an integral part of the platelet proteome. Amongst the highly variable platelet-derived proteins, two spots were both identified as GSTO1 and assigned to either the wild-type or mutant isoform of SNP A140D. Remarkably, when the spots were considered within the respective genotype groups, their CV decreased to about the median variation. Albeit 2D-DIGE allowed correct genotyping, two individuals seemed to be GSTO1*A140 deficient. Probing 2D-Western blots with novel mAb, however, detected A140 protein as additional spot at pH 8.1, caused by the SNPs E155del and E208K. In contrast to previous studies, we show that GSTO1 protein is expressed in vivo, despite the deletion E155. Our data indicate that incorporation of exogenous proteins and genetic polymorphisms of endogenous proteins represent the main source of extreme biological variation in the platelet proteome.

Download full-text


Available from: Michael Veitinger
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. Scope of review: The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. Major conclusions: All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. General significance: In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.
    No preview · Article · Nov 2012 · Biochimica et Biophysica Acta
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets play an important role in the pathogenesis and the ischemic complications of atherosclerosis. Platelets may be activated by several different agonists, promoting the release of their granule contents and subsequent aggregation and thrombus formation; this leads to ischemic events such as myocardial infarction or stroke. Aspirin, the most popular antiplatelet agent, is a cornerstone in the treatment and prevention of ischemic events in cardiovascular patients. It inhibits a particular amplification pathway of platelet activation, based on thromboxane A2 (TxA2) generation. However, despite a consistent inhibition of TxA2 production, a substantial proportion of patients display preserved platelet function. This phenotype is defined as “high on-treatment platelet reactivity”. It is a risk factor for the recurrence of ischemic events, particularly in acute vessel injury settings. The determinants of platelet reactivity in these patients remain unclear, but previous studies, including healthy subjects, suggested that it is genetically determined. Over the last decade, technological improvements have led to the development of highly efficient omics strategies. High-throughput genomics, transcriptomics and proteomics have the potential to dissect fine metabolic modulations. However, the bioinformatics management of these large data sets remains a challenging issue. Network biology approaches permit the integration of different omics data sets and the identification of mutual interactions between gene products and/or molecules. The inherent topology of the network can be then explored at a pathway level rather than at a gene level. Network biology constitutes an efficient tool to further explore platelet metabolism and defects, such as modulators of platelet reactivity in cardiovascular patients.
    Full-text · Article · Dec 2013 · Translational Proteomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Accurate biomarker quantification requires carefully chosen normalisation procedures. When single proteins are used as loading controls (LCs), it is crucial that their expressional stability must be known. Platelets are an important biomarker source, especially for neurological diseases. We performed a systematical analysis of the platelet proteome to identify proteins suitable as LCs, using the 2-D DIGE system. We first screened a healthy population (n=137), aged between 18 and 104years, to find proteins with small coefficients of total variation (CVtot), herein termed low biological variation proteins (LBVP). Thereafter, expressional stability was verified in 101 patients suffering from Alzheimer's- (AD), Parkinson's- disease, vascular dementia or schizophrenia. Interestingly, traditional LCs such as tubulin beta-1 and GAPDH, were not found amongst LBVP. The least variable protein, calculated over all 238 individuals, was 14-3-3 gamma, with a CVtot of 9.3%, showing no gender, age or disease dependency. The normalisation capability of 14-3-3 gamma was superior to traditional LC in quantifying Western blot signals of the platelet AD-biomarker Monoamine Oxidase B of patient versus controls. Similar results were obtained with HepG2 cells, treated in vitro with DNA-methyltransferase inhibitor 5-aza-2'deoxicytidine. Finally, we provide a list of alternative normalisation candidates for accurate biomarker quantification. Biological significance: This paper suggests a considerable list of platelet proteins with a lower biological variation than well known "housekeeping" proteins like GAPDH and tubulin. Spot abundances of found proteins are middle ranged and unaffected by gender, age and certain diseases. Hence, listed proteins might be valuable normalisation candidates used additionally or alternatively. Platelet's least variable protein 14-3-3 gamma is validated as normalisation protein in platelet biomarker quantification. Furthermore 14-3-3 gamma is demonstrated to be also stable expressed by in HepG2, cells others than platelets, when treated by DNA methylation inhibitor.
    No preview · Article · Oct 2013 · Journal of proteomics
Show more