Prognosis in the Patients with Prolonged Extracorporeal Membrane Oxygenation

Article (PDF Available)inKorean Journal of Thoracic and Cardiovascular Surgery 45(4):236-41 · August 2012with19 Reads
DOI: 10.5090/kjtcs.2012.45.4.236 · Source: PubMed
Prolonged usage of extracorporeal membrane oxygenation (ECMO) may induce multi-organ failure. This study is aimed to evaluate prognostic factors in the patients with ECMO. Also, the prognosis of ECMO with Kidney Injury Network Scoring system is studied. From May 2005 to July 2011, 172 cases of ECMO were performed. The cases of perioperative use of ECMO were excluded. Renal failure patient and younger than 15 years old one were also excluded. As a result, 26 cases were enrolled in this study. Male patients were 15 (57.7%), and mean age was 56.57±17.03 years old. Demographic data, ECMO parameters, weaning from ECMO, and application of continuous renal replacement therapy are collected and Acute Kidney Injury Network (AKIN) scores were evaluated just before ECMO and day 1, day 2 during application of ECMO. Venoarterial ECMO was applied in 22 cases (84.6%). The reasons for applications of ECMO were cardiac origin in 21 (80.8%), acute respiratory distress syndrome in 4, and septic shock in 1 case. Successful weaning from ECMO was achieved in 15 cases (57.7%), and survival discharge rate was 9 cases (34.6%). Mean duration of application of ECMO was 111.39±54.06 hours. In univariate analysis, myocarditis was independent risk factors on weaning failure. Using the receiver operating characteristic curve, level of hemoglobin on 24 hours after ECMO, and base excess on 48 hours after ECMO were showed more than 0.7. AKIN score was not matched the prognosis of the patients with ECMO. In our study, the prognosis of the patients with myocarditis was poor. Hemoglobin level at first 24 hours, and degree of acidosis at 48 hours were useful methods in relating with prognosis of ECMO. AKIN scoring system was not related with the prognosis of the patients. Further study for prognosis and organ injury during application ECMO may be needed.

Full-text (PDF)

Available from: PubMed Central · License: CC BY-NC
  • [Show abstract] [Hide abstract] ABSTRACT: Extracorporeal membrane oxygenation (ECMO) is a method of life support to maintain cardiopulmonary function. Its use as a medical application has increased since its inception to treat multiple conditions including acute respiratory distress syndrome, myocardial ischemia, cardiomyopathy, and septic shock. While complications including neurological and renal injury occur in patients on ECMO, bleeding and coagulopathy are most common. ECMO is associated with an inflammatory response promoting a hypercoagulable state, requiring anticoagulation to avoid thromboembolism originating in the nonendothelial surfaced circuit. However, excessive anticoagulation may result in bleeding complications including intracerebral hemorrhage. Monitoring anticoagulation for ECMO has its origins in cardiopulmonary bypass for cardiac surgery; however, there is no ideal level of anticoagulation, no standardized method to monitor anticoagulation, nor are all centers standardized on what is used for anticoagulation. Multiple blood products are used in an effort to decrease bleeding in the setting of anticoagulation, often in the setting of recent surgery, and this leads to significant increases in cost for patients on ECMO and transfusion-related complications. In this review article, we discuss the evolution of the various modalities of ECMO, indications, contraindications, and complications. Furthermore, we review the different strategies for anticoagulation and treatment of coagulopathy while on ECMO. Finally, we discuss the cost of ECMO and associated blood product transfusion.
    Article · Apr 2014
  • [Show abstract] [Hide abstract] ABSTRACT: Background: Extracorporeal membrane oxygenation (ECMO) is an effective therapy for patients with reversible cardiac and/or respiratory failure. Acute kidney injury (AKI) often occurs in patients supported with ECMO; it frequently evolves into chronic kidney damage or end-stage renal disease and is associated with a reported 4-fold increase in mortality rate. Although AKI is generally due to the hemodynamic alterations associated with the baseline disease, ECMO itself may contribute to maintaining kidney dysfunction through several mechanisms. Summary: AKI may be related to conditions derived from or associated with extracorporeal therapy, leading to a reduction in renal oxygen delivery and/or to inflammatory damage. In particular, during pathological conditions requiring ECMO, the biological defense mechanisms maintaining central perfusion by a reduction of perfusion to peripheral organs (such as the kidney) have been identified as pretreatment and patient-related risk factors for AKI. Hormonal pathways are also impaired in patients supported with ECMO, leading to failures in mechanisms of renal homeostasis and worsening fluid overload. Finally, inflammatory damage, due to the primary disease, heart and lung crosstalk with the kidney or associated with extracorporeal therapy itself, may further increase the susceptibility to AKI. Renal replacement therapy can be integrated into the main extracorporeal circuit during ECMO to provide for optimal fluid management and removal of inflammatory mediators. Key messages: AKI is frequently observed in patients supported with ECMO. The pathophysiology of the associated AKI is chiefly related to a reduction in renal oxygen delivery and/or to inflammatory damage. Risk factors for AKI are associated with a patient's underlying disease and ECMO-related conditions.
    Article · Jan 2015