Association between Physical Activity and Urinary Estrogens and Estrogen Metabolites in Premenopausal Women

Harvard University, Cambridge, Massachusetts, United States
The Journal of Clinical Endocrinology and Metabolism (Impact Factor: 6.21). 08/2012; 97(10):3724-33. DOI: 10.1210/jc.2012-1732
Source: PubMed


The objective of the study was to evaluate in premenopausal women the relationships of physically active and sedentary behaviors reported for adulthood and adolescence with a comprehensive profile of estrogen metabolism.

Fifteen estrogens and estrogen metabolites (jointly termed EM) were measured using liquid chromatography-tandem mass spectrometry in luteal phase urines from 603 premenopausal women in the Nurses' Health Study II. Geometric means of individual EM, metabolic pathway groups, and pathway ratios were examined by level of exposure after adjustment for age, body mass index, alcohol intake, menstrual cycle length, and sample collection timing.

High overall physical activity in adulthood (42+ metabolic equivalent h/wk vs. <3 metabolic equivalent h/wk) was associated with a 15% lower level of urinary estradiol (Ptrend=0.03) and 15% lower level of 16-hydroxylation pathway EM (Ptrend=0.03). Levels of 2- and 4-hydroxylation pathway EM did not differ significantly by physical activity. High overall activity was also positively associated with four ratios: 2-pathway EM to parent estrogens (Ptrend=0.05), 2-pathway catechols to parent estrogens (Ptrend=0.03), 2-pathway catechols to methylated 2-pathway catechols (Ptrend<0.01), and 2-hydroxyestrone to 16α-hydroxyestrone (Ptrend=0.01). Similar patterns of association were noted for walking and vigorous physical activity, but there was little evidence of associations with sedentary behaviors or activity during adolescence.

High levels of physical activity were associated with lower levels of parent estrogens and 16-hydroxylation pathway EM and preferential metabolism to 2-pathway catechols. The results of our analysis, the largest, most comprehensive examination of physical activity and estrogen metabolism to date, may be useful in future studies investigating the etiology of diseases linked to both physical activity and endogenous estrogen.

6 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammographic density is a strong and independent risk factor for breast cancer and is considered an intermediate marker of risk. The major predictors of premenopausal mammographic density, however, have yet to be fully elucidated. To test the hypothesis that urinary estrogen metabolism profiles are associated with mammographic density, we conducted a cross-sectional study among 352 premenopausal women in the Nurses' Health Study II (NHSII). We measured average percent mammographic density using a computer-assisted method. In addition, we assayed 15 estrogens and estrogen metabolites (jointly termed EM) in luteal-phase urine samples. We used multivariable linear regression to quantify the association of average percent density with quartiles of each individual EM as well as the sum of all EM (total EM), EM groups defined by metabolic pathway, and pathway ratios. In multivariable models controlling for body mass index and other predictors of breast density, women in the top quartile of total EM had an average percent density 3.4 percentage points higher than women in the bottom quartile (95 % confidence interval: -1.1, 8.0; p trend = 0.08). A non-significant positive association was noted for the 2-hydroxylation pathway catechols (breast density was 4.0 percentage points higher in top vs. bottom quartile; p trend = 0.06). In general, we observed no associations with parent estrogens or the 4- or 16-hydroxylation pathways or pathway ratios. These results suggest that urinary luteal estrogen profiles are not strongly associated with premenopausal mammographic density. If these profiles are associated with breast cancer risk, they may not act through influences on breast density.
    No preview · Article · Sep 2012 · Breast Cancer Research and Treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose To evaluate the association between physical activity (PA) across the menstrual cycle and reproductive function. Methods The BioCycle Study (2005-2007) followed 259, healthy premenopausal women not using hormonal contraceptives for up to two menstrual cycles (N=509 cycles). Serum leptin, estradiol, progesterone, luteinizing hormone, follicle-stimulating hormone, and testosterone were measured five to eight times per cycle. Linear mixed models were used to estimate the effect of past-week PA (measured four times during each cycle) on hormone levels. Past-week PA was categorized into tertiles based on metabolic equivalent [MET]-h/week (cut-points were 15.3 and 35.7). Risk ratios for sporadic anovulation were estimated using generalized linear models. Analyses adjusted for habitual PA (assessed at baseline), body mass index, race, age, and perceived stress. Linear mixed models used inverse probability weights to control for concurrent reproductive hormones and caloric intake. Results High past-week PA was inversely associated with leptin (-6.6%, 95% confidence interval [-10.6, -2.5]) and luteal phase progesterone (-22.1% [-36.2, -4.7]) as compared with low past-week PA. High past-week PA was not significantly associated with sporadic anovulation (adjusted risk ratio=1.5 [0.6, 3.4]). Conclusions High levels of PA were modestly associated with changes in select hormones, but not sporadic anovulation among moderate to highly active premenopausal women.
    No preview · Article · Jan 2013 · Annals of epidemiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well accepted that exercise can decrease breast cancer risk. Limited clinical evidence suggests that this risk could be mediated through changes in estrogen metabolism in premenopausal women. Our objective was to investigate the effects of exercise on premenopausal estrogen metabolism pertinent to breast cancer risk. Sedentary, healthy, young eumenorrheic women were randomized into an intervention of 30 minutes of moderate-to-vigorous aerobic exercise five times a week for approximately 16 weeks (n = 212), or into a usual-lifestyle sedentary control group (n = 179). Urinary levels of estrogens [estrone [E1], estradiol, and estriol] and nine estrogen metabolites were measured at baseline and at study end by liquid chromatography/tandem mass spectrometry. The ratios of 2-hydroxyestrone to 16α-hydroxyestrone (2-OHE1/16α-OHE1) and 2-OHE1 to 4-hydroxyestrone (2- OHE1/4-OHE1) were also calculated. The exercise intervention resulted in significant increases in aerobic fitness and lean body mass and a significant decrease in percent body fat. For exercisers who completed the study (n = 165), 2-OHE1/16α-OHE1 increased significantly (P = 0.043), whereas E1 decreased significantly (P = 0.030) in control participants (n = 153). The change from baseline in 2-OHE1/16α-OHE1 was significantly different between groups (P = 0.045), even after adjustment for baseline values. The exercise intervention resulted in a significant increase in the 2-OHE1/16α-OHE1 ratio but no differences in other estrogen metabolites or ratios. Impact: Our results suggest that changes in premenopausal estrogen metabolism may be a mechanism by which increased physical activity lowers breast cancer risk. Cancer Epidemiol Biomarkers Prev; 22(5); 756-64. ©2013 AACR.
    Preview · Article · May 2013 · Cancer Epidemiology Biomarkers & Prevention
Show more