Increased Amygdala Responses to Sad But Not Fearful Faces in Major Depression: Relation to Mood State and Pharmacological Treatment

Neuroscience and Psychiatry Unit and Department of Imaging Science and Biomedical Engineering, University of Manchester, Manchester,United Kingdom.
American Journal of Psychiatry (Impact Factor: 12.3). 08/2012; 169(8):841-50. DOI: 10.1176/appi.ajp.2012.11121774
Source: PubMed


Increased amygdala response to negative emotions seen in functional MRI (fMRI) has been proposed as a biomarker for negative emotion processing bias underlying depressive symptoms and vulnerability to depressive relapse that are normalized by antidepressant drug treatment. The purpose of this study was to determine whether abnormal amygdala responses to face emotions in depression are related to specific emotions or change in response to antidepressant treatment and whether they are present as a stable trait in medication-free patients in remission.
Sixty-two medication-free unipolar depressed patients (38 were currently depressed, and 24 were in remission) and 54 healthy comparison subjects underwent an indirect face-emotion processing task during fMRI. Thirty-two currently depressed patients were treated with the antidepressant citalopram for 8 weeks. Adherence to treatment was evaluated by measuring citalopram plasma concentrations.
Patients with current depression had increased bilateral amygdala responses specific to sad faces relative to healthy comparison subjects and nonmedicated patients in stable remission. Treatment with citalopram abolished the abnormal amygdala responses to sad faces in currently depressed patients but did not alter responses to fearful faces.
Aberrant amygdala activation in response to sad facial emotions is specific to the depressed state and is a potential biomarker for a negative affective bias during a depressive episode.

Download full-text


Available from: Shane McKie
  • Source
    • "Conversely, one proposed mechanism of ADMs is that they promote a positive bias in attention to counter dysphoric attention (Harmer & Cowen, 2013). Whereas amygdala reactivity to negative stimuli often normalizes following successful ADM (Arnone et al., 2012; Sheline et al., 2001) or CT (Fu et al., 2008), elevated amygdala reactivity is still observed in remitted patients following negative mood challenge, and is associated with dysphoric attention and memory biases (Ramel et al., 2007). The amygdala does not operate in isolation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The substantial health burden associated with major depressive disorder (MDD) is a product of both its high prevalence and the significant risk of relapse, recurrence, and chronicity. Establishing recurrence vulnerability factors (VFs) could improve the long-term management of MDD by identifying the need for further intervention in seemingly recovered patients. We present a model of sensitization in depression vulnerability, with an emphasis on the integration of behavioral and neural systems accounts. Evidence suggests that VFs fall into 2 categories: dysphoric attention and dysphoric elaboration. Dysphoric attention is driven by fixation on negative life events, and is characterized behaviorally by reduced executive control, and neurally by elevated activity in the brain's salience network. Dysphoric elaboration is driven by rumination that promotes overgeneral self- and contextual appraisals, and is characterized behaviorally by dysfunctional attitudes, and neurally by elevated connectivity within normally distinct prefrontal brain networks. Although few prospective VF studies exist from which to catalogue a definitive neurobehavioral account, extant data support the value of the proposed 2-factor model. Measuring the continued presence of these 2 VFs during recovery may more accurately identify remitted patients who would benefit from targeted prophylactic intervention. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
    Full-text · Article · Feb 2015 · Journal of Abnormal Psychology
  • Source
    • "Persistence of hyperactivity in this region has been shown to help identify poor treatment responders. Amygdala hyperactivity in response to negative emotions has been demonstrated to be characteristic of a depressed state and is sensitive to clinical improvement after a course of antidepressant treatment.46 These findings suggest that structural and functional neuroimaging could contribute to the prediction of treatment response, and recent studies using machine learning methods indicate it is possible to predict treatment response at an individual level with a high degree of accuracy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, "machine learning" methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level.
    Full-text · Article · Aug 2014 · Neuropsychiatric Disease and Treatment
  • Source
    • "Depressed adolescents also have increased amygdala activity during an emotion regulation task (requiring them to notice and maintain an emotional reaction) (137). Multiple neuroimaging studies have found that depressed patients have increased amygdala activity in response to sad faces, thought to reflect a processing bias in depression (127, 138, 139). As discussed above, the amygdala has been implicated in counterfactual thinking and regret (13, 68, 72). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive neuroscience enables us now to decompose major depressive disorder into dysfunctional component processes and relate these processes to specific neural substrates. This approach can be used to illuminate the biological basis of altered psychological processes in depression, including abnormal decision-making. One important decision-related process is counterfactual thinking, or the comparison of reality to hypothetical alternatives. Evidence suggests that individuals with depression experience exaggerated emotional responses due to focusing on counterfactual decision outcomes in general and regret, i.e., the emotion associated with focus on an alternative superior outcome, in particular. Regret is linked to self-esteem in that it involves the evaluation of an individual's own decisions. Alterations of self-esteem, in turn, are a hallmark of depression. The literature on the behavioral and neural processes underlying counterfactual thinking, self-esteem, and depression is selectively reviewed. A model is proposed in which unstable self-representation in depression is more strongly perturbed when a different choice would have produced a better outcome, leading to increased feelings of regret. This approach may help unify diverse aspects of depression, can generate testable predictions, and may suggest new treatment avenues targeting distorted counterfactual cognitions, attentional biases toward superior counterfactual outcomes, or increased affective response to regretted outcomes.
    Full-text · Article · Nov 2013 · Frontiers in Psychiatry
Show more