An Effort to Use Human-Based Exome Capture Methods to Analyze Chimpanzee and Macaque Exomes

School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.
PLoS ONE (Impact Factor: 3.23). 09/2012; 7(7):e40637. DOI: 10.1371/journal.pone.0040637
Source: PubMed


Non-human primates have emerged as an important resource for the study of human disease and evolution. The characterization of genomic variation between and within non-human primate species could advance the development of genetically defined non-human primate disease models. However, non-human primate specific reagents that would expedite such research, such as exon-capture tools, are lacking. We evaluated the efficiency of using a human exome capture design for the selective enrichment of exonic regions of non-human primates. We compared the exon sequence recovery in nine chimpanzees, two crab-eating macaques and eight Japanese macaques. Over 91% of the target regions were captured in the non-human primate samples, although the specificity of the capture decreased as evolutionary divergence from humans increased. Both intra-specific and inter-specific DNA variants were identified; Sanger-based resequencing validated 85.4% of 41 randomly selected SNPs. Among the short indels identified, a majority (54.6%-77.3%) of the variants resulted in a change of 3 base pairs, consistent with expectations for a selection against frame shift mutations. Taken together, these findings indicate that use of a human design exon-capture array can provide efficient enrichment of non-human primate gene regions. Accordingly, use of the human exon-capture methods provides an attractive, cost-effective approach for the comparative analysis of non-human primate genomes, including gene-based DNA variant discovery.

Download full-text


Available from: Guojie Zhang
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease.
    Full-text · Article · Nov 2013 · ILAR journal / National Research Council, Institute of Laboratory Animal Resources
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural history museum collections provide unique resources for understanding how species respond to environmental change, including the abrupt, anthropogenic climate change of the past century. Ideally, researchers would conduct genome-scale screening of museum specimens to explore the evolutionary consequences of environmental changes, but to date such analyses have been severely limited by the numerous challenges of working with the highly degraded DNA typical of historic samples. Here, we circumvent these challenges by using custom, multiplexed, exon capture to enrich and sequence ~11 000 exons (~4 Mb) from early 20th-century museum skins. We used this approach to test for changes in genomic diversity accompanying a climate-related range retraction in the alpine chipmunks (Tamias alpinus) in the high Sierra Nevada area of California, USA. We developed robust bioinformatic pipelines that rigorously detect and filter out base misincorporations in DNA derived from skins, most of which likely resulted from postmortem damage. Furthermore, to accommodate genotyping uncertainties associated with low-medium coverage data, we applied a recently developed probabilistic method to call single-nucleotide polymorphisms and estimate allele frequencies and the joint site frequency spectrum. Our results show increased genetic subdivision following range retraction, but no change in overall genetic diversity at either nonsynonymous or synonymous sites. This case study showcases the advantages of integrating emerging genomic and statistical tools in museum collection-based population genomic applications. Such technical advances greatly enhance the value of museum collections, even where a pre-existing reference is lacking and points to a broad range of potential applications in evolutionary and conservation biology.
    Full-text · Article · Sep 2013 · Molecular Ecology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The world of primate genomics is rapidly expanding in new and exciting ways due to lowered costs and new technologies in molecular methods and bioinformatics. The Primate order is composed of 78 genera and 478 species, including human. Taxonomic inferences are complex and likely a consequence of ongoing hybridization, introgression, and reticulate evolution among closely related taxa. Recently, we applied large-scale sequencing methods and extensive taxon sampling to generate a highly resolved phylogeny that affirms, reforms and extends previous depictions of primate speciation. The next stage of research uses this phylogeny as foundation for investigating genome content, structure and evolution across primates. Ongoing and future applications of a robust primate phylogeny are discussed, highlighting advancements in adaptive evolution of genes and genomes, taxonomy and conservation management of endangered species, next generation genomic technologies and biomedicine.
    Full-text · Article · Feb 2014 · Annual Review of Animal Biosciences
Show more