Heme Oxygenase-1 Promotes Survival of Renal Cancer Cells through Modulation of Apoptosis- and Autophagy-regulating Molecules

ArticleinJournal of Biological Chemistry 287(38):32113-23 · July 2012with17 Reads
DOI: 10.1074/jbc.M112.393140 · Source: PubMed
The cytoprotective enzyme heme oxygenase-1 (HO-1) is often overexpressed in different types of cancers and promotes cancer progression. We have recently shown that the Ras-Raf-ERK pathway induces HO-1 to promote survival of renal cancer cells. Here, we examined the possible mechanisms underlying HO-1-mediated cell survival. Considering the growing evidence about the significance of apoptosis and autophagy in cancer, we tried to investigate how HO-1 controls these events to regulate survival of cancer cells. Rapamycin (RAPA) and sorafenib, two commonly used drugs for renal cancer treatment, were found to induce HO-1 expression in renal cancer cells Caki-1 and 786-O; and the apoptotic effect of these drugs was markedly enhanced upon HO-1 knockdown. Overexpression of HO-1 protected the cells from RAPA- and sorafenib-induced apoptosis and also averted drug-mediated inhibition of cell proliferation. HO-1 induced the expression of anti-apoptotic Bcl-xL and decreased the expression of autophagic proteins Beclin-1 and LC3B-II; while knockdown of HO-1 down-regulated Bcl-xL and markedly increased LC3B-II. Moreover, HO-1 promoted the association of Beclin-1 with Bcl-xL and Rubicon, a novel negative regulator of autophagy. Drug-induced dissociation of Beclin-1 from Rubicon and the induction of autophagy were also inhibited by HO-1. Together, our data signify that HO-1 is up-regulated in renal cancer cells as a survival strategy against chemotherapeutic drugs and promotes growth of tumor cells by inhibiting both apoptosis and autophagy. Thus, application of chemotherapeutic drugs along with HO-1 inhibitor may elevate therapeutic efficiency by reducing the cytoprotective effects of HO-1 and by simultaneous induction of both apoptosis and autophagy.
    • "anti-apoptotic activities (17,18). Studies have indicated that upregulation of HMOX-1 is correlated with the inhibition of autophagy (19,20). Autophagy, which describes the process of cellular self-digestion, is considered to be a cytoprotective response, which may occur following the withdrawal of growth factors or under stressful conditions (21). "
    [Show abstract] [Hide abstract] ABSTRACT: Heme oxygenase-1 (HMOX-1) is a microsomal enzyme that exerts anti-apoptotic and cytoprotective effects. In the present study, HMOX-1 was demonstrated to be overexpressed and able to be induced by doxorubicin in breast cancer cell lines. Knockdown of HMOX-1 using short interfering (si)RNA enhanced the cytotoxicity of doxorubicin in MDA-MB-231 and BT549 cells. Knockdown of HMOX-1 downregulated B cell lymphoma (Bcl)-2 and Bcl-extra large expression, and significantly enhanced doxorubicin-induced apoptosis in MDA-MB-231 and BT549 cells. Additionally, knockdown of HMOX-1 upregulated light chain 3B expression and markedly increased the accumulation of autophagic vacuoles in MDA-MB-231 and BT549 cells treated with doxorubicin. These results indicated that HMOX-1 may be involved in conferring the chemoresistance of breast cancer cells, by preventing apoptosis and autophagy. Therefore, HMOX-1 may represent a potential therapeutic target for enhancing the cytotoxicity and efficacy of doxorubicin during the treatment of breast cancer.
    Article · Nov 2015
    • "HO-1 is vital to fumarate hydratase deficient kidney cells survival and inhibition of it can lead to cell death [29] . It has been demonstrated HO-1 is often overexpressed in RCC patients and cell lines, and promotes survival of renal cancer cells [30,31]. COX-2 is an enzyme which catalyzes the synthesis of prostaglandins from arachidonic acid. "
    [Show abstract] [Hide abstract] ABSTRACT: Methionine adenosyltransferase 2A (MAT2A) is an enzyme that catalyzes the formation of S-adenosylmethionine (SAMe) by joining methionine and ATP. SAMe is a methyl donor for transmethylation and has an important role for DNA and/or protein methylation. MAT2A is expressed widely in many tissues especially in kidney. Several studies have demonstrated that there are abnormal expressions of MAT2A in several kinds of cancers such as liver and colon cancers. But the relationship of MAT2A between renal cell carcinomas (RCC) is less understood. The mRNA expression level of the MAT2A gene was determined in 24 RCC patients and 4 RCC cell lines, using real-time quantitative-polymerase chain reaction (RT-PCR). The MAT2A protein content was measured by western blotting and immunohistochemical analysis in 55 RCC patients.The mRNA levels of heme oxygenase-1(HO-1) and cyclooxygenase-2 (COX-2) were also analysized in patients using RT-PCR. The correlations between the MAT2A and HO-1 as well as COX-2 were analyzed with nonparametric Spearman method. MAT2A transcript was significantly downregulated in cancer tissues compared to normal tissues (P < 0.05). Immunohistochemical analysis and western blotting indicated that level of MAT2A protein was decreased in cancer tissues. The statistical analysis reveals a negative correlation between MAT2A and HO-1 expression in RCC patients and cell lines (P < 0.01). This study demonstrated that MAT2A was lower expression in cancer tissues, suggesting that it may be involved in the development of RCC. MAT2A is a transcriptional corepressor for HO-1 expression by supplying SAM for methyltransferases,which may be one of potential mechanism of MAT2A as tumor suppressor in kidney carcinogenesis.
    Full-text · Article · Mar 2014
    • "Therefore, HO1 is protective against various injuries, such as necrotizing enterocolitis [11] and ischemic-reperfusion injury [12]. However, anti-apoptotic and cytoprotective roles for chemotherapeutic agents targeting HO1 were shown to induce tumor-progression131415. Increased expression of HO1 in malignant tissue compared with normal tissue has been reported in various human malignant tumors, such as prostate cancer [16], oral squamous cell carcinoma [17], and lung cancers [18,19]. "
    [Show abstract] [Hide abstract] ABSTRACT: Nerve growth factor (NGF) is a neurotrophin and has been suggested to induce heme oxygenase-1 (HO1) expression. Although the role of HO1 in tumorigenesis remains controversial, recent evidence suggests NGF and HO1 as tumor-progressing factors. However, the correlative role of NGF and HO1 and their prognostic impact in breast carcinoma is unknown. We investigated the expression and prognostic significance of the expression of NGF and HO1 in 145 cases of breast carcinoma. Immunohistochemical expression of NGF and HO1 was observed in 31% and 49% of breast carcinoma, respectively. The expression of NGF and HO1 significantly associated with each other, and both have a significant association with histologic grade, HER2 expression, and latent distant metastasis. The expression of NGF and HO1 predicted shorter overall survival of breast carcinoma by univariate and multivariate analysis. NGF expression was an independent prognostic indicator for relapse-free survival by multivariate analysis. The combined expression pattern of NGF and HO1 was also an independent prognostic indicator of overall survival and relapse-free survival. The patients with tumors expressing NGF had the shortest survival and the patients with tumor, which did not express NGF or HO1 showed the longest survival time. This study has demonstrated that individual expression of NGF or HO1, and the combined NGF/HO1 expression pattern could be prognostic indicators for breast carcinoma patients.
    Full-text · Article · Nov 2013
Show more