HNF4α Antagonists Discovered by a High-Throughput Screen for Modulators of the Human Insulin Promoter

Article (PDF Available)inChemistry & biology 19(7):806-18 · July 2012with90 Reads
DOI: 10.1016/j.chembiol.2012.05.014 · Source: PubMed
Hepatocyte nuclear factor (HNF)4α is a central regulator of gene expression in cell types that play a critical role in metabolic homeostasis, including hepatocytes, enterocytes, and pancreatic β cells. Although fatty acids were found to occupy the HNF4α ligand-binding pocket and were proposed to act as ligands, there is controversy about both the nature of HNF4α ligands as well as the physiological role of the binding. Here, we report the discovery of potent synthetic HNF4α antagonists through a high-throughput screen for effectors of the human insulin promoter. These molecules bound to HNF4α with high affinity and modulated the expression of known HNF4α target genes. Notably, they were found to be selectively cytotoxic to cancer cell lines in vitro and in vivo, although in vivo potency was limited by suboptimal pharmacokinetic properties. The discovery of bioactive modulators for HNF4α raises the possibility that diseases involving HNF4α, such as diabetes and cancer, might be amenable to pharmacologic intervention by modulation of HNF4α activity.
  • [Show abstract] [Hide abstract] ABSTRACT: Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds.
    Article · Apr 2013
  • [Show abstract] [Hide abstract] ABSTRACT: The principal finding of this study is that two drugs, alverine and benfluorex, used in vastly different clinical settings and previously unknown to share mechanistic or structural similarity, activated the nuclear receptor transcription factor HNF4α. Both were hits in a high-throughput screen for compounds that reversed the inhibitory effect of the fatty acid palmitate on human insulin promoter activity. Alverine is used in the treatment of irritable bowel syndrome, while benfluorex (Mediator) was used to treat hyperlipidemia and type II diabetes. Benfluorex was withdrawn from the market recently because of serious cardiovascular side effects related to fenfluramine-like activity. Strikingly, alverine and benfluorex have a previously unrecognized structural similarity, consistent with a common mechanism of action. Gene expression and biochemical studies revealed that they both activate HNF4α. This novel mechanism of action should lead to a reinterpretation of previous studies with these drugs and suggests a path towards the development of therapies for diseases such as inflammatory bowel and diabetes that may respond to HNF4α activators.
    Article · May 2013
  • [Show abstract] [Hide abstract] ABSTRACT: The transcriptional regulation of drug-metabolizing enzymes and transporters (here collectively referred to as DMEs) in the developing proximal tubule is not well understood. As in the liver, DME regulation in the PT may be mediated through nuclear receptors which are thought to "sense" deviations from homeostasis by being activated by ligands, some of which are handled by DMEs, including drug transporters. Systems analysis of transcriptomic data during kidney development predicted a set of upstream transcription factors, including Hnf4a and Hnf1a, as well as Nr3c1 (Gr), Nfe2l2 (Nrf2), Ppara, and Tp53. Motif analysis of cis-regulatory further suggested that Hnf4a and Hnf1a are the main transcriptional regulators in the PT. Available expression data from tissue-specific Hnf4a KO tissues revealed that distinct subsets of DMEs were regulated by Hnf4a in a tissue-specific manner. ChIP-seq was performed to characterize the PT-specific binding sites of Hnf4a in rat kidneys at three developmental stages (prenatal, immature, adult), which further supported a major role for Hnf4a in regulating PT gene expression, including DMEs. In ex vivo kidney organ culture, an antagonist of Hnf4a (but not a similar inactive compound) led to predicted changes in DME expression, including among others Fmo1, Cyp2d2, Cyp2d4, Nqo2, as well as organic cation transporters and organic anion transporters Slc22a1(Oct1), Slc22a2 (Oct2), Slc22a6 (Oat1), Slc22a8(Oat3), and Slc47a1(Mate1). Conversely, overexpression of Hnf1a and Hnf4a in primary mouse embryonic fibroblasts (MEFs), sometimes considered a surrogate for mesenchymal stem cells, induced expression of several of these proximal tubule DMEs, as well as epithelial markers and a PT-specific brush border marker Ggt1. These cells had organic anion transporter function. Taken together, the data strongly supports a critical role for HNF4a and Hnf1a in the tissue-specific regulation of drug handling and differentiation toward a PT cellular identity. We discuss our data in the context of the Remote Sensing and Signaling Hypothesis (Ahn and Nigam, 2009; Wu et al., 2011).
    Full-text · Article · Sep 2013
Show more