Article

Moundbuilders of the Amazon: Geophysical Archaeology on Marajo Island, Brazil

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Moundbuilders of the Amazon: Geophysical Archaeology on Marajo Island, Brazil. Anna Curtenius Roosevelt. San Diego: Academic Press, 1991. 495 pp. $89.95 (cloth). ISBN 0–12–595348–8.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

Article
The exact size of the wetland area of South America is not known but may comprise as much as 20% of the sub-continent, with river floodplains and intermittent interfluvial wetlands as the most prominent types. A few wetland areas have been well studied, whereas little is known about others, including some that are very large. Despite the fact that most South American countries have signed the Ramsar convention, efforts to elaborate basic data have been insufficient, thereby hindering the formulation of a wetland-friendly policy allowing the sustainable management of these areas. Until now, the low population density in many wetland areas has provided a high level of protection; however, the pressure on wetland integrity is increasing, mainly as a result of land reclamation for agriculture and animal ranching, infrastructure building, pollution, mining activities, and the construction of hydroelectric power plants. The Intergovernmental Panel on Climate Change has predicted increasing temperatures, accelerated melting of the glaciers in Patagonia and the Andes, a rise in sea level of 20–60 cm, and an increase in extreme multiannual and short-term climate events (El Niño and La Niña, heavy rains and droughts, heat waves). Precipitation may decrease slightly near the Caribbean coast as well as over large parts of Brazil, Chile, and Patagonia, but increase in Colombia, Ecuador, and Peru, around the equator, and in southeastern South America. Of even greater impact may be a change in rainfall distribution, with precipitation increasing during the rainy season and decreasing during the dry season. There is no doubt that the predicted changes in global climate will strongly affect South American wetlands, mainly those with a low hydrologic buffer capacity. However, for the coming decades, wetland destruction by wetland-unfriendly development planning will by far outweigh the negative impacts of global climate change. South American governments must bear in mind that there are many benefits that wetlands bring about for the landscape and biodiversity as well as for humans. While water availability will be the key problem for the continent’s cities and agroindustries, intact wetlands can play a major role in storing water, buffering river and stream discharges, and recharging subterranean aquifers.
Article
A new paleolimnological dataset from Lake Pacucha (13 °S, 3095 m elevation) in the Peruvian Andes provides evidence of changes in lake level over the past 24,700 yr. A late-glacial highstand in lake level gave way to an early-Holocene lowstand. This transition appears to have paralleled precessional changes that would have reduced insolation during the wet-season. The occurrence of benthic/salt-tolerant diatoms and CaCO3 deposition suggest that the lake had lost much of its volume by c. 10,000 cal yr BP. Pronounced Holocene oscillations in lake level included a second phase of low lake level and heightened volatility lasting from c. 8300 to 5000 cal yr BP. While a polymictic lake formed at c. 5000 cal yr BP. These relatively wet conditions were interrupted by a series of drier events, the most pronounced of which occurred at c. 750 cal yr BP. Paleolimnological changes in the Holocene were more rapid than those of either the last glacial maximum or the deglacial period.
Article
Full-text available
Locally extensive pre-Columbian human occupation and modification occurred in the forests of the central and eastern Amazon Basin, but whether comparable impacts extend westward and into the vast terra firme (interfluvial) zones, remains unclear. We analyzed soils from 55 sites across central and western Amazonia to assess the history of human occupation. Sparse occurrences of charcoal and the lack of phytoliths from agricultural and disturbance species in the soils during pre-Columbian times indicated that human impacts on interfluvial forests were small, infrequent, and highly localized. No human artifacts or modified soils were found at any site surveyed. Riverine bluff areas also appeared less heavily occupied and disturbed than similar settings elsewhere. Our data indicate that human impacts on Amazonian forests were heterogeneous across this vast landscape.
Article
Full-text available
Archaeology is a discipline that can offer a long term perspective on the impacts human societies have had on the environment. Landscape studies are critical for understanding these impacts, because they embrace a dialectical view regarding the relationship between humans and their immediate surroundings. Such studies are well suited to the Amazon basin, a region that has driven much media attention due to astonishing rates of deforestation in certain areas, with likely consequences on the planet’s climate, posing challenges to the survival of the human species for the coming decades. In fact, although much has been said about the impacts of contemporary societies on tropical forest environments, ancient landscape management practices have not yet been considered part of the equation. Thus far, we know that Amerindian societies have been actively transforming their surroundings for millennia. On the eve of European contact, large, complex societies were bringing about long-lasting transformations of landscapes throughout the basin. Conquest and colonization resulted in epidemics, enslavement, and changes to the indigenous economies that managed to survive the genocide. Afterwards, as colonizers would exploit traditional resources leading, in many instances, to their exhaustion, a huge quantity of information on sustainable ways of dealing with certain environments became lost. Traditional knowledge, however, still survives among certain indigenous, peasant (caboclo), and African-Brazilian populations. Documentation of surviving management practices together with the study of the archaeological record could provide valuable information for policy makers. This article examines historical transformations that took place on Marajó Island during the last two millennia and advocates the importance of archaeological research for understanding the historical ecology of landscape change. It is argued that ancient economic strategies, some still being practiced today, could be re-created in the present, since these may constitute opportunities for sustainable sources of income to local communities.
Article
Full-text available
As in other parts of Amazonia, pre-Columbian Indians have profoundly modified the coast of the Guianas. Between 650 and 1650 AD, Arauquinoid people occupied a territory that was approximately 600 km long and used the raised field technique intensively before the European conquest. They erected thousands of raised fields of various shapes, dug canals, ditches, and pathways, and built artificial mounds to establish their villages. All these earthworks changed forever the face of the coastal flooded savannas and their ecology. Such labor was probably organized under the leadership of a central authority: it seems that Arauquinoid societies were organized in a chiefdom system. Statistical calculations, based on the known surface area of raised fields and on their estimated productivity, suggest a population density of 50 to 100 inhabitants per km2. Pre-Columbian inhabitants of the Guianas coast carefully organized, managed and “anthropisized” their territory following a specific pattern.
Article
Full-text available
Recent studies in Amazonia historical ecology have revealed substantial diversity and dynamic change in coupled natural human systems. In the southern Amazon, several headwater basins show evidence of substantial pre-Columbian landscape modification, particularly in areas historically dominated by speakers of the Arawak language family. The headwater basin of the Xingu River, the easternmost of these areas occupied by Arawak-speaking peoples, has revealed such a complex built environment. This discussion examines settlement pattern and land-use, which have implications for understanding the dynamics of natural-human systems in the Upper Xingu basin and other areas across the transitional forests of the southern Amazon.
ResearchGate has not been able to resolve any references for this publication.