Because of its indirect band structure, crystalline silicon does not show visible light emission at room temperature. Low-dimensional silicon polymers such as polysilanes, or silicon polymers with sheet-like structures, however, have a direct band structure. They attract considerable attention in solid-state physics mainly because of their outstanding luminescence properties. Especially the two-dimensional sheet polymers such as siloxene (Si6O3H6)n or polysilyne (SiH)n are promising candidates for technological application because of their higher mechanical stability and higher conductivity. Since (SiH)n, accessible from (SiBr)n and LiAlH4 or, more recently, from CaSi2 and HCl, is highly unstable and shows luminescence only in the UV part of the spectrum, siloxene with its strong room temperature photoluminescence in the green or yellow has been most thoroughly investigated. Research on siloxene has been further intensified by the recent suggestion that the efficient visible luminescence observed in porous silicon, a phenomenon of considerable current interest, is mainly due to the presence of siloxene species on the surface of the porous silicon particles.