Independent and Tissue-Specific Prognostic Impact of miR-126 in Nonsmall Cell Lung Cancer

Institute of Clinical Medicine, University of Tromso, Tromso, Norway
Cancer (Impact Factor: 4.89). 07/2011; 117(14):3193 - 3200. DOI: 10.1002/cncr.25907


BACKGROUND:Angiogenesis is pivotal in tumor development. Vascular endothelial growth factor-A (VEGF-A) is considered one of the most important angiogenic factors, but lately several microRNAs (miRs) have been associated with vascular development. miR-126 has been related to tumor angiogenesis and in the regulation of VEGF-A. The authors aimed to investigate the prognostic impact of miR-126 and its co-expression with VEGF-A in nonsmall cell lung cancer (NSCLC) patients.METHODS:Tumor tissue samples from 335 resected stage I to IIIA NSCLC patients were obtained and tissue microarrays (TMAs) were constructed with 4 cores from each tumor specimen. VEGF-A expression was evaluated by immunohistochemistry, and in situ hybridization was used to evaluate the expression of miR-126.RESULTS:In the total material, miR-126 was a significant negative prognostic factor in both univariate (P = .005) and multivariate analyses (hazard ratio [HR] 1.8, 95% confidence interval [CI] 1.2-2.8, P = .01). Stratified by histology, miR-126 was only significant in squamous cell carcinomas (univariate: P < .001; multivariate: HR 3.1, CI 95% 1.7-5.6, P<.001). Stratified by lymph node status, miR-126 was significant only in the lymph node-positive subgroup (univariate: P<.001; multivariate: HR 4.1, CI 95% 2.0-8.4, P < .001). High miR-126 expression correlated significantly with high VEGF-A expression (P = .037). The co-expression of miR-126 and VEGF-A had a significant prognostic impact (P = .002), with 5-year survival rates of 68%, 51%, and 42% for low/low (n = 150), mixed combinations (n = 129), and high/high (n = 35) expression, respectively.CONCLUSIONS:miR-126 is a strong and independent negative prognostic factor in NSCLC, and its prognostic impact appears related primarily to histology and nodal status. Cancer 2011. © 2011 American Cancer Society.

Download full-text


Available from: Sveinung Wergeland Sørbye, Oct 06, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are short endogenous RNA molecules that are able to regulate (mainly inhibiting) gene expression at the post-transcriptional level. The MicroRNA expression profile is cell-specific, but it is sensitive to perturbations produced by stresses and diseases. Endothelial cells subjected to metabolic stresses, such as calorie restriction, nutrients excess (glucose, cholesterol, lipids) and hypoxia may alter their functionality. This is predictive for the development of pathologies like atherosclerosis, diabetes, and hypertension. Moreover, cancer cells can activate a resting endothelium by secreting pro-angiogenic factors, in order to promote neoangiogenesis, which is essential for tumor growth. Endothelial altered phenotype is mirrored by altered mRNA, microRNA, and protein expression, with a microRNA being able to control pathways by regulating the expression of multiple mRNAs. In this review we will consider the involvement of microRNAs in modulating the response of endothelial cells to metabolic stresses and their role in promoting or halting angiogenesis.
    Full-text · Article · Aug 2011 · Cellular and Molecular Life Sciences CMLS

  • No preview · Article · Nov 2011 · Expert Review of Molecular Diagnostics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRs) recently emerged as prominent regulators of cancer processes. In the current study we aimed at elucidating regulatory pathways and mechanisms through which miR-494, one of the miR species found to be down-regulated in cholangiocarcinoma (CCA), participates in cancer homeostasis. miR-494 was identified as down-regulated in CCA based on miR arrays. Its expression was verified with quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). To enforce miR expression, we employed both transfection methods, as well as a retroviral construct to stably overexpress miR-494. Up-regulation of miR-494 in cancer cells decreased growth, consistent with a functional role. mRNA arrays of cells treated with miR-494, followed by pathway analysis, suggested that miR-494 impacts cell cycle regulation. Cell cycle analyses demonstrated that miR-494 induces a significant G1/S checkpoint reinforcement. Further analyses demonstrated that miR-494 down-regulates multiple molecules involved in this transition checkpoint. Luciferase reporter assays demonstrated a direct interaction between miR-494 and the 3'-untranslated region of cyclin-dependent kinase 6 (CDK6). Last, xenograft experiments demonstrated that miR-494 induces a significant cancer growth retardation in vivo. Conclusion: Our findings demonstrate that miR-494 is down-regulated in CCA and that its up-regulation induces cancer cell growth retardation through multiple targets involved in the G1-S transition. These findings support the paradigm that miRs are salient cellular signaling pathway modulators, and thus represent attractive therapeutic targets. miR-494 emerges as an important regulator of CCA growth and its further study may lead to the development of novel therapeutics.
    Full-text · Article · Dec 2011 · Hepatology
Show more