Article

Protective Effects of GLP-1 on Glomerular Endothelium and Its Inhibition by PKC Activation in Diabetes

Corresponding author: George L. King, .
Diabetes (Impact Factor: 8.1). 07/2012; 61(11):2967-79. DOI: 10.2337/db11-1824
Source: PubMed

ABSTRACT

To characterize glucagon-like peptide (GLP)-1 signaling and its effect on renal endothelial dysfunction and glomerulopathy. We studied the expression and signaling of GLP-1 receptor (GLP-1R) on glomerular endothelial cells and the novel finding of protein kinase A-dependent phosphorylation of c-Raf at Ser259 and its inhibition of angiotensin II (Ang II) phospho-c-Raf(Ser338) and Erk1/2 phosphorylation. Mice overexpressing protein kinase C (PKC)β2 in endothelial cells (EC-PKCβ2Tg) were established. Ang II and GLP-1 actions in glomerular endothelial cells were analyzed with small interfering RNA of GLP-1R. PKCβ isoform activation induced by diabetes decreased GLP-1R expression and protective action on the renal endothelium by increasing its degradation via ubiquitination and enhancing phospho-c-Raf(Ser338) and Ang II activation of phospho-Erk1/2. EC-PKCβ2Tg mice exhibited decreased GLP-1R expression and increased phospho-c-Raf(Ser338), leading to enhanced effects of Ang II. Diabetic EC-PKCβ2Tg mice exhibited greater loss of endothelial GLP-1R expression and exendin-4-protective actions and exhibited more albuminuria and mesangial expansion than diabetic controls. These results showed that the renal protective effects of GLP-1 were mediated via the inhibition of Ang II actions on cRaf(Ser259) and diminished by diabetes because of PKCβ activation and the increased degradation of GLP-1R in the glomerular endothelial cells.

Download full-text

Full-text

Available from: Munehiro Kitada, Feb 03, 2014
    • "All rights reserved.[13,14]. The GLP-1R agonist exendin-4 protects renal function through its anti-inflammatory property[14]and the improvement of endothelial function[11,15]. The kidney plays an important role in the excretion of incretin metabolites and most dipeptidyl peptidase-4 (DPP-4) inhibitors and GLP-1R agonists[16], thus a special attention is required regarding the potential renal impairment of incretin-based therapy despite GLP-1 elevated by DPP-4 inhibitors or GLP-1R agonists exert an antihypertensive effect through stimulation of GLP-1R[11,17181920. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucagon-like peptide-1 (GLP-1) exerts its actions via activating GLP-1 receptor (GLP-1R). Our previous study showed a reduced GLP-1R expression in spontaneously hypertensive rat (SHR) renal arteries. The present study investigated the mechanisms underlying GLP-1R downregulation in hypertension. Intrarenal arteries of normotensive Wistar-Kyoto rat (WKY) and SHR were suspended in the myograph for force measurement. GLP-1R expression was evaluated by both immunofluorescence and western blotting. Protein kinase Cα (PKCα), PKCβ, PKCδ, and total PKC levels were assayed by western blotting. Immunofluorescence revealed reduced GLP-1R level in SHR renal arteries compared with WKY renal arteries. GLP-1R agonist exendin-4 induced concentration-dependent relaxations in WKY arteries, which mainly depended on the presence of endothelium. GLP-1R antagonist exendin 9-39 inhibited this relaxation in WKY arteries, whereas the relaxations were significantly less in SHR arteries. Ex-vivo treatment with PKC inhibitor GFX, PKCα and PKCβ inhibitor Gö6976, and PKCβ inhibitor hispidin but not PKCδ inhibitor rottlerin improved the impaired relaxations and restored the diminished GLP-1R expression in SHR arteries. Furthermore, PKCβ level was greater in SHR than WKY arteries, with no difference in PKCα, PKCδ, or total PKC expressions between two rat strains. Treatment with PKC-activating agent phorbol-12-myristate-13-acetate attenuated exendin-4-induced relaxations and reduced GLP-1R expression in WKY arteries, which were reversed by GFX, Gö6976, or hispidin. More relevantly, immunofluorescence of human renal arteries also showed a reduced GLP-1R level in hypertensive patients. The present results provide novel evidence that the reduced GLP-1R expression in SHR renal arteries is most likely mediated through PKCβ upregulation; the latter probably contributes to the impaired GLP-1R-mediated vasorelaxations in hypertension.
    No preview · Article · Apr 2015 · Journal of Hypertension
  • Source
    • "It is resistant to DPP-4, resulting in a longer circulating half-life time, about 2.4 hours. In addition to coordinated effects on glucose metabolism [20, 21], exenatide exerts endothelium-protective action similar to GLP-1 [22, 23]. However, until now, the underlying mechanisms are not fully understood. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We will investigate the effects of exenatide on vascular endothelial injury and nitrooxidative stress in hyperglycemia both in vivo and in vitro and explore the role of nitrooxidative stress in endothelium-protective action of exenatide. Healthy male Wistar rats were randomly divided into 4 groups: control, diabetes mellitus (DM) model, low dose of exenatide treatment, and high dose of exenatide treatment. In vitro study showed that, compared with control group, the DM rats exhibited a lowered endothelium-dependent relaxation and damaged structural integrity of thoracic aortas, and there was a significant increase in plasma nitrotyrosine concentration. These parameters were improved after treatment with either low dose or high dose of exenatide for 45 days. In vitro study showed that exendin-4 (the active ingredient of exenatide) attenuated HUVECs injury induced by high glucose, with improving cell viability and attenuating cell apoptosis. Exendin-4 also significantly alleviated the increased malondialdehyde (MDA), nitrotyrosine content, and inducible nitric oxide synthase (iNOS) expression induced by high glucose in HUVECs. In conclusion, this study demonstrates that exenatide treatment can alleviate the vascular endothelial injury, as well as attenuating the nitrooxidative stress in hyperglycemia, implying that the endothelium-protective effect of exenatide might be related to the reduction of nitrooxidative stress.
    Full-text · Article · Nov 2013
  • Source
    • "AMPK) could be of high interest (Figure 7). In this sense, GLP-1 may also directly counteract the pro-oxidative, inflammatory and apoptotic activities induced by angiotensin-II [43,44]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart. Goto-Kakizaki (GK) rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin) or vehicle (n=10, each). After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for in vitro assays. Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36), alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells. Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36) promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actions.
    Full-text · Article · Oct 2013 · PLoS ONE
Show more