Confluent focal nodular hyperplasia mimicking liver cancer: Value of liver-specific contrast-enhanced MRI for diagnosis

Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.
Journal of the Chinese Medical Association (Impact Factor: 0.85). 07/2012; 75(7):355-8. DOI: 10.1016/j.jcma.2012.04.017
Source: PubMed


Focal nodular hyperplasia is the second most common benign hepatic tumor. Unlike adenoma as well as the malignant neoplasms, focal nodular hyperplasia can often be managed successfully without surgery. Use of liver-specific contrast-enhanced magnetic resonance imaging allows clinicians to confirm the diagnosis noninvasively in some patients, allowing select patients to avoid surgery. We report a case of a patient who presented with the rare profile of multiple, confluent lesions that were diagnosed, using magnetic resonance imaging with gadolinium-dimeglumine, as focal nodular hyperplasia. This complicated case was managed successfully and noninvasively based on algorithm found in the recent literature that allows patients to avoid unnecessary surgery.

Full-text preview

Available from:
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diagnosis facilitates the discovery of an impending disease. A complete and accurate treatment of cancer depends heavily on its early medical diagnosis. Cancer, one of the most fatal diseases world-wide, consistently affects a larger number of patients each year. Magnetism, a physical property arising from the motion of electrical charges, which causes attraction and repulsion between objects and does not involve radiation, has been under intense investigation for several years. Magnetic materials show great promise in the application of image contrast enhancement to accurately image and diagnose cancer. Chelating gadolinium (Gd III) and magnetic nanoparticles (MNPs) have the prospect to pave the way for diagnosis, operative management, and adjuvant therapy of different kinds of cancers. The potential of MNP-based magnetic resonance (MR) contrast agents (CAs) now makes it possible to image portions of a tumor in parts of the body that would be unclear with the conventional magnetic resonance imaging (MRI). Multiple functionalities like variety of targeting ligands and image contrast enhancement have recently been added to the MNPs. Keeping aside the additional complexities in synthetic steps, costs, more convoluted behavior, and effects in-vivo, multifunctional MNPs still face great regulatory hurdles before clinical availability for cancer patients. The trade-off between additional functionality and complexity is a subject of ongoing debate. The recent progress regarding the types, design, synthesis, morphology, characterization, modification, and the in-vivo and in-vitro uses of different MRI contrast agents, including MNPs, to diagnose cancer will be the focus of this review. As our knowledge of MNPs' characteristics and applications expands, their role in the future management of cancer patients will become very important. Current hurdles are also discussed, along with future prospects of MNPs as the savior of cancer victims.
    No preview · Article · May 2013 · Chinese Physics B