Stimulation of Histone Deacetylase Activity by Metabolites of Intermediary Metabolism

From the Departments of Biological Chemistry and.
Journal of Biological Chemistry (Impact Factor: 4.57). 07/2012; 287(38):32006-16. DOI: 10.1074/jbc.M112.362467
Source: PubMed


Histone deacetylases (HDACs) function in a wide range of molecular processes, including gene expression, and are of significant interest as therapeutic targets. Although their native complexes, subcellular localization, and recruitment mechanisms to chromatin have been extensively studied, much less is known about whether the enzymatic activity of non-sirtuin HDACs can be regulated by natural metabolites. Here, we show that several coenzyme A (CoA) derivatives, such as acetyl-CoA, butyryl-CoA, HMG-CoA, and malonyl-CoA, as well as NADPH but not NADP(+), NADH, or NAD(+), act as allosteric activators of recombinant HDAC1 and HDAC2 in vitro following a mixed activation kinetic. In contrast, free CoA, like unconjugated butyrate, inhibits HDAC activity in vitro. Analysis of a large number of engineered HDAC1 mutants suggests that the HDAC activity can potentially be decoupled from "activatability" by the CoA derivatives. In vivo, pharmacological inhibition of glucose-6-phosphate dehydrogenase (G6PD) to decrease NADPH levels led to significant increases in global levels of histone H3 and H4 acetylation. The similarity in structures of the identified metabolites and the exquisite selectivity of NADPH over NADP(+), NADH, and NAD(+) as an HDAC activator reveal a previously unrecognized biochemical feature of the HDAC proteins with important consequences for regulation of histone acetylation as well as the development of more specific and potent HDAC inhibitors.

Full-text preview

Available from:
  • Source
    • "It is also important to note that the significance of the two recent epidemiological studies discussed in this paper may also lie in the potential of revealing VPA-like environmental or nutritional substances that could increase the risk of ASD. For example, it was recently shown that in certain cell types global histone acetylation and HDAC activity could be regulated by metabolites of intermediate metabolism [96]. Based on studies primarily in nonneuronal cells, it is also now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that can influence HDAC activity [96, 97]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Two recent epidemiological investigations in children exposed to valproic acid (VPA) treatment in utero have reported a significant risk associated with neurodevelopmental disorders and autism spectrum disorder (ASD) in particular. Parallel to this work, there is a growing body of animal research literature using VPA as an animal model of ASD. In this focused review we first summarize the epidemiological evidence linking VPA to ASD and then comment on two important neurobiological findings linking VPA to ASD clinicopathology, namely, accelerated or early brain overgrowth and hyperexcitable networks. Improving our understanding of how the drug VPA can alter early development of neurological systems will ultimately improve our understanding of ASD.
    Full-text · Article · Dec 2013
  • Source
    • "In contrast, SIRT7 has a low expression level in skeletal muscle, but it may play a role in cardiac muscle function and plasticity (Ford 2006). Although not discussed in this review, there is also recent evidence that non-sirtuin deacetylases can act as metabolic sensors and may regulate metabolism and other processes in a metabolite-sensitive manner that is dependent on changes in coenzyme A (CoA) derivatives as well as NADPH (Vogelauer et al. 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years the role of acetylation has gained ground as an essential modulator of intermediary metabolism in skeletal muscle. Imbalance in energy homeostasis or chronic cellular stress, due to diet, aging or disease, translate into alterations in the acetylation levels of key proteins which governs bioenergetics, cellular substrate use and/or changes in mitochondrial content and function. For example, cellular stress induced by exercise or caloric restriction can alter the coordinated activity of acetyltransferases and deacetylases to increase mitochondrial biogenesis and function in order to adapt to low energetic levels. The natural duality of these enzymes, as metabolic sensors and effector proteins, have helped biologists understand how the body can integrate seemingly distinct signaling pathways to control mitochondrial biogenesis, insulin sensitivity, glucose transport, reactive oxygen species handling, angiogenesis and muscle satellite cell proliferation/differentiation. Our review will summarize the recent developments related to acetylation dependent responses following metabolic stress in skeletal muscle.
    Full-text · Article · Sep 2013 · Journal of Molecular Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related diseases such as type 2 diabetes, cardiovascular disease, and cancer involve epigenetic modifications, where accumulation of minute changes in the epigenome over time leads to disease manifestation. Epigenetic changes are influenced by life style and diets. This represents an avenue whereby dietary components could accelerate or prevent age-related diseases through their effects on epigenetic modifications. Histone acetylation is an epigenetic modification that is regulated through the opposing action of histone acetylases (HATs) and deacetylases (HDACs). These two families of enzymes play critical roles in metabolic processes and their dysregulation is associated with pathogenesis of several diseases. Dietary components, such as butyrate, sulforaphane, and curcumin, have been shown to affect HAT and HDAC activity, and their health benefits are attributed, at least in part, to epigenetic modifications. Given the decades that it takes to accumulate epigenetic changes, it is unlikely that pharmaceuticals could undo epigenetic changes without side effects. Therefore, long term consumption of dietary components that can alter the epigenome could be an attractive means of disease prevention. The goal of this review is to highlight the roles of diets and food components in epigenetic modifications through the regulation of HATs and HDACs for disease prevention.
    Full-text · Article · Dec 2012 · Nutrients
Show more