α7 Nicotinic acetylcholine receptor agonist attenuates neuropathological changes associated with intracerebral hemorrhage in mice

Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
Neuroscience (Impact Factor: 3.36). 07/2012; 222:10-9. DOI: 10.1016/j.neuroscience.2012.07.024
Source: PubMed


We have demonstrated previously that nicotine affords neuroprotective and anti-inflammatory effects against intracerebral hemorrhage (ICH)-associated neuropathological changes. The present study was undertaken to clarify whether subtype-specific agonists of nicotinic acetylcholine receptors (nAChRs) could preserve tissue integrity in mouse ICH model in vivo. ICH was induced by unilateral injection of collagenase into the striatum of male C57BL/6 mice. Daily intraperitoneal injection of α7 nAChR agonist PNU-282987 (3-10mg/kg) for 3 days, starting from 3h after induction of ICH, significantly increased the number of surviving neurons in the central and the peripheral regions of hematoma at 3 days after ICH. In contrast, α4β2 nAChR agonist RJR-2403 (2-10 mg/kg) given in the same regimen showed no significant effect. PNU-282987 and RJR-2403 did not affect either the size of hemorrhage or the extent of brain edema associated with ICH. PNU-282987 decreased the number of activated microglia/macrophages accumulating in the perihematoma region at 3 days after ICH, in a dose-dependent manner. On the other hand, the number of microglia/macrophages in the central region of hematoma at early phase of pathology (6 h after ICH) was increased by 10mg/kg PNU-282987. These results suggest that α7 nAChR agonist can provide neuroprotective effect on ICH-induced injury, independently of its anti-inflammatory actions.

11 Reads
  • Source
    • "MRI examinations were conducted at 6 h, 1 d, 3 d, 1 week and 4 weeks after induction of ICH, following behavioral tests mentioned above. Biospec 7-Tesla 70/20 USR (Bruker Biospin KK, Yokohama, Japan) with mouse brain surface coil was used [17]. Mice were anesthetized with isoflurane, and a 3-plane scout imaging sequence was used to adjust the position of the head of mouse until the central slice was located at the level of the largest area of hemorrhage. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracerebral hemorrhage (ICH) is featured by poor prognosis such as high mortality rate and severe neurological dysfunction. In humans, several valuables including hematoma volume and ventricular expansion of hemorrhage are known to correlate with the extent of mortality and neurological dysfunction. However, relationship between hematoma conditions and the severity of symptoms in animal ICH models has not been clarified. Here we addressed this issue by using 7-tesla magnetic resonance imaging (MRI) on collagenase-induced ICH model in mice. We found that the mortality rate and the performance in behavioral tests did not correlate well with the volume of hematoma. In contrast, when hemorrhage invaded the internal capsule, mice exhibited high mortality and showed poor sensorimotor performance. High mortality rate and poor performance in behavioral tests were also observed when hemorrhage invaded the lateral ventricle, although worsened symptoms associated with ventricular hemorrhage were apparent only during early phase of the disease. These results clearly indicate that invasion of the internal capsule or the lateral ventricle by hematoma is a critical determinant of poor prognosis in experimental ICH model in mice as well as in human ICH patients. MRI assessment may be a powerful tool to refine investigations of pathogenic mechanisms and evaluations of drug effects in animal models of ICH.
    Preview · Article · Jul 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: Blood-brain barrier disruption and consequent vasogenic edema formation codetermine the clinical course of intracerebral hemorrhage (ICH). This study examined the effect of PHA-543613, a novel α7 nicotinic acetylcholine receptor agonist, on blood-brain barrier preservation after ICH. Methods: Male CD-1 mice, subjected to intrastriatal blood infusion, received PHA-543613 alone or in combination with α7 nicotinic acetylcholine receptor antagonist methyllycaconitine or phosphatidylinositol 3-kinase inhibitor wortmannin. Results: PHA-543613 alone, but not in combination with methyllycaconitine or wortmannin, inhibited glycogen synthase kinase-3β, thus, stabilizing β-catenin and tight junction proteins, which was paralleled by improved blood-brain barrier stability and ameliorated neurofunctional deficits in ICH animals. Conclusions: PHA-543613 preserved blood-brain barrier integrity after ICH, possibly through phosphatidylinositol 3-kinase-Akt-induced inhibition of glycogen synthase kinase-3β and β-catenin stabilization.
    Full-text · Article · Apr 2013 · Stroke
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracerebral hemorrhage (ICH) is the most deadly and least treatable subtype of stroke, and at the present time there are no evidence-based therapeutic interventions for patients with this disease. Secondary injury mechanisms are known to cause substantial rates of morbidity and mortality following ICH, and the inflammatory cascade is a major contributor to this post-ICH secondary injury. The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) agonists have a well-established antiinflammatory effect and have been shown to attenuate perihematomal edema volume and to improve functional outcome in experimental ICH. The authors evaluate the current evidence for the use of an α7-nAChR agonist as a novel therapeutic agent in patients with ICH.
    No preview · Article · May 2013 · Neurosurgical FOCUS
Show more