Complement Inhibitors from Scabies Mites Promote Streptococcal Growth – A Novel Mechanism in Infected Epidermis?

George Washington University, United States of America
PLoS Neglected Tropical Diseases (Impact Factor: 4.45). 07/2012; 6(7):e1563. DOI: 10.1371/journal.pntd.0001563
Source: PubMed


Scabies is highly prevalent in socially disadvantaged communities such as indigenous populations and in developing countries. Generalized itching causes discomfort to the patient; however, serious complications can occur as a result of secondary bacterial pyoderma, commonly caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus. In the tropics, skin damage due to scabies mite infestations has been postulated to be an important link in the pathogenesis of disease associated with acute rheumatic fever and heart disease, poststreptococcal glomerulonephritis and systemic sepsis. Treatment of scabies decreases the prevalence of infections by bacteria. This study aims to identify the molecular mechanisms underlying the link between scabies and GAS infections.
GAS bacteria were pre-incubated with blood containing active complement, phagocytes and antibodies against the bacteria, and subsequently tested for viability by plate counts. Initial experiments were done with serum from an individual previously exposed to GAS with naturally acquired anti-GAS antibodies. The protocol was optimized for large-scale testing of low-opsonic whole blood from non-exposed human donors by supplementing with a standard dose of heat inactivated human sera previously exposed to GAS. This allowed an extension of the dataset to two additional donors and four proteins tested at a range of concentrations. Shown first is the effect of scabies mite complement inhibitors on human complement using ELISA-based complement activation assays. Six purified recombinant mite proteins tested at a concentration of 50 µg/ml blocked all three complement activation pathways. Further we demonstrate in human whole blood assays that each of four scabies mite complement inhibitors tested increased GAS survival rates by 2-15 fold.
We propose that local complement inhibition plays an important role in the development of pyoderma in scabies infested skin. This molecular link between scabies and bacterial infections may provide new avenues to develop alternative treatment options against this neglected disease.

Download full-text


Available from: Kadaba Srinivassa Sriprakash
  • Source
    • "Scabies cause discomfort to the patient and serious complication as a results of secondary bacterial infection caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus [1]. Recently, a high burden of skin and soft tissue infections (a total of 7252 isolates), and 55% of methicillinresistant S. aureus (MRSA) bloodstream infections were reported and spread out in hospitals across different regions of the world. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Infectious diseases are a significant cause of morbidity and mortality worldwide, accounting for approximately 50% of all deaths in tropical countries and as much as 20% of deaths in the USA. The emergence of multi-drug resistant (MDR) strains makes the risk of these infections even more threatening and an important public health problem thereby increasing need of new agents for fighting pathogens. In this review, the remarkable antibacterial properties possessed by various snake venoms (Crotalide, Elapidae, and Viperidae families) were discussed and in particular phospholipase A2s (PLA2s) that have emerged from various studies as potential in the last few years. Group IIA PLA2s are the most potent among the snake venom (sv)PLA2s against various types of bacteria. Further, antibacterial derivatives from PLA2s, e.g. peptides derived from the C-terminal sequence of Lys49-PLA2s (amino acids 115-129), kill bacteria and cause severe membrane-damaging effects. Mechanisms of binding to the bacterial surface and subsequent killing by peptides are based on positive charge, hydrophobicity, and length. These peptide candidates are easy to design and synthesize in pure form (~95% purity). Such peptides may be potentially useful in the clinic as new antimicrobials for combating infections due to antibiotic-resistant bacteria that include methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus in the near future.
    Full-text · Article · May 2014 · Mini-Reviews in Organic Chemistry
  • Source
    • "Because scabies mites ingest plasma [16], inactivating host complement may protect the mite gut from complement-mediated damage. Complement inhibition may promote the pyoderma caused by group A streptococci that is often associated with scabies lesions [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.
    Preview · Article · Aug 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scabies remains a significant public health problem worldwide. Research into aspects of Sarcoptes scabiei biology and host-parasite interactions has been impeded by an inability to maintain mites in vitro and by limited access to parasite material and infected subjects. The generation of comprehensive expressed sequence tag libraries has enabled the initial characterisation of molecules of interest to diagnostics, vaccines, and drug resistance. The recent development and utilisation of animal models, combined with next-generation technologies, is anticipated to lead to new strategies to prevent, diagnose, and treat scabies, ultimately improving skin health in both human and veterinary settings. This article will summarise recent molecular and immunologic advances on scabies, and will address priorities for the exciting 'next chapter' of scabies research.
    Full-text · Article · Oct 2012 · Trends in Parasitology
Show more