Discovery of a Plasmodium falciparum Glucose-6-phosphate Dehydrogenase 6-phosphogluconolactonase Inhibitor (R,Z)-N-((1-Ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3 ,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) That Reduces Parasite Growth in Vitro

Department of Pediatrics, University of California, San Diego, La Jolla, California 92037, United States.
Journal of Medicinal Chemistry (Impact Factor: 5.45). 07/2012; 55(16):7262-72. DOI: 10.1021/jm300833h
Source: PubMed


A high-throughput screen of the NIH's MLSMR collection of ∼340000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is important for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human orthologue. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fast-growing cells. In P. falciparum , the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11 (ML276), is a submicromolar inhibitor of PfG6PD (IC(50) = 889 nM). It is completely selective for the enzyme's human isoform, displays micromolar potency (IC(50) = 2.6 μM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress.

Download full-text


Available from: Patrick Maloney, Apr 22, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD) has been considered as a potential target for severe forms of anti-malaria therapy. In this study, several classification models were built to distinguish active and weakly active PfG6PD inhibitors by support vector machine method. Each molecule was initially represented by 1,044 molecular descriptors calculated by ADRIANA.Code. Correlation analysis and attribute selection methods in Weka were used to get the best reduced set of molecular descriptors, respectively. The best model (Model 2w) gave a prediction accuracy (Q) of 93.88 % and a Matthew's correlation coefficient (MCC) of 0.88 on the test set. Some properties such as [Formula: see text] atom charge, [Formula: see text] atom charge, and lone pair electronegativity-related descriptors are important for the interaction between the PfG6PD and the inhibitor.
    No preview · Article · May 2013 · Molecular Diversity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparumis responsible for the most severe form of human malaria. P. vivax, in contrast, is the most widespread malaria parasite with an enormous impact on health and economy, since the infection is characterized by high rates of relapses. Due to the mild course of malaria tertiana and complicated in vitro culturing conditions of P. vivax, most of the research on malaria parasites has focused on P. falciparum so far. The redox metabolism of P. falciparumis a promising target for novel antimalarial drugs, since maintaining aredox equilibrium is of fundamental importance for the parasite.P. falciparum contains a cytosolic glutathione and thioredoxin system, as well as redox systems in the apicoplast and the mitochondrion. In contrast to P. falciparum, little is known about the redox system of P. vivax so far. This review summarizes the current knowledge of the redox metabolism in malaria parasites and provides a detailed in silico comparison of the known and mostly well characterized redox enzymes from P. falciparum and the largely unknown redox proteins from P. vivax. Known antimalarials at least partially mediating their antiparasitic activity by influencing the redox balance of Plasmodium, including dehydroepiandrosterone, Mannich bases, methylene blue, and naphthoquinones, are discussed. Furthermore, we present novel inhibitors identified via screening of a compound library from the Leibniz Institute for Natural Product Research and Infection Biology, Jena that are active againstthe redox-related enzymes thioredoxin reductase, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase 6-phosphogluconolactonasefrom P. falciparum.
    Full-text · Article · Dec 2013 · Current Medicinal Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable “next generation” target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are “druggable.” One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease.
    Preview · Article · Apr 2014 · Journal of Biological Chemistry
Show more