Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge

Procedia in Vaccinology 12/2010; 2(1):73-77. DOI: 10.1016/j.provac.2010.03.013


Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC transporter protein) generated significant protection against lethal inhaled B. mallei ATCC23344 and B. pseudomallei 1026b challenge. Immunization with BopA elicited the greatest protective activity, resulting in 100% and 60% survival against B. mallei and B. pseudomallei challenge, respectively. Moreover, sera from recovered mice demonstrated reactivity with the recombinant proteins. Dendritic cells stimulated with each of the different recombinant proteins showed distinct cytokine patterns. In addition, T cells from immunized mice produced IFN-γ following in vitro re-stimulation. These results indicated therefore that it was possible to elicit cross-protective immunity against both B. mallei and B. pseudomallei by vaccinating animals with one or more novel recombinant proteins identified in B. mallei.

Download full-text


Available from: Don Mark Estes
  • Source
    • "Cloning and protein expression protocols were followed as described previously (Whitlock et al., 2010). Briefly, target sequences were subjected to bioinformatics analysis using SignalP v.3.0 (Bendtsen et al., 2004), TMHMM v.2.0 (Krogh et al., 2001), and PHYRE v.0.2 (Kelley et al., 2009) to identify putative N-terminal amino acid (AA) secretion sequences, transmembrane domains, and homologies to published crystal structures, respectively. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Burkholderia are highly evolved Gram-negative bacteria that primarily infect solipeds but are transmitted to humans by ingestion and cutaneous or aerosol exposures. Heightened concern over human infections of Burkholderia mallei and the very closely related species B. pseudomallei is due to the pathogens' proven effectiveness as bioweapons, and to the increased potential for natural opportunistic infections in the growing diabetic and immuno-compromised populations. These Burkholderia species are nearly impervious to antibiotic treatments and no vaccine exists. In this study, the genome of the highly virulent B. mallei ATCC23344 strain was examined by expression library immunization for gene-encoded protective antigens. This protocol for genomic-scale functional screening was customized to accommodate the unusually large complexity of Burkholderia, and yielded 12 new putative vaccine candidates. Five of the candidates were individually tested as protein immunogens and three were found to confer significant partial protection against a lethal pulmonary infection in a murine model of disease. Determinations of peripheral blood cytokine and chemokine profiles following individual protein immunizations show that interleukin-2 (IL-2) and IL-4 are elicited by the three confirmed candidates, but unexpectedly interferon-γ and tumor necrosis factor-α are not. We suggest that these pathogen components, discovered using genetic immunization and confirmed in a conventional protein format, will be useful toward the development of a safe and effective glanders vaccine.
    Full-text · Article · Nov 2011 · Frontiers in Microbiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapid detection of the category B biothreat agents Burkholderia pseudomallei and Burkholderia mallei in acute infections is critical to ensure that appropriate treatment is administered quickly to reduce an otherwise high probability of mortality (ca. 40% for B. pseudomallei). We are developing assays that can be used in clinical laboratories or security applications for the direct detection of surface-localized and secreted macromolecules produced by these organisms. We present our current medium-throughout approach for target selection and production of Burkholderia macromolecules and describe the generation of a Fab molecule targeted to the B. mallei BimA protein. We also present development of prototype assays for detecting Burkholderia species using anti-lipopolysaccharide antibodies.
    No preview · Article · Jan 2011 · Faraday Discussions
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD50s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD50 for the Δhcp1 mutant was >103 bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.
    Full-text · Article · Feb 2011 · Infection and immunity
Show more