ArticlePDF Available

The Evolution of Floral Symmetry

Authors:

Abstract and Figures

Symmetry is a defining feature of floral diversity. Here we review the evolutionary and ecological context of floral symmetry (adding new data regarding its distribution), as well as the underlying developmental and molecular bases. Two main types of symmetry are recognized: radial symmetry or actinomorphy and bilateral symmetry or zygomorphy. The fossil record suggests that zygomorphy evolved in various lineages ∼50 MY (million years) after the emergence of angiosperms, coinciding with the diversification of specialized insect pollinators. Among extant angiosperms, zygomorphy is a highly homoplastic trait, and is associated with species radiation thereby satisfying the definition of key innovation. The evolution of symmetry may be influenced by clade-specific floral and inflorescence characteristics, possibly indicating different underlying constraints. Ecological studies suggest that zygomorphy may promote cross-fertilization through increased precision in pollen placement on the pollinator’s body. The molecular bases of flower symmetry are beginning to be unravelled in core eudicots, and available evidence underlines the repeated recruitment of CYC2 genes, associated with frequent gene duplications. Future prospects are discussed, emphasizing symmetry as a model character for understanding the evolutionary bases of homoplastic floral traits.
Content may be subject to copyright.
!
!
!
!
!
!"#$%&"'()*+%,'$%-+#.#/'001%(230#$"*4%#/%)"*%3--5%!"#$%&'()*%)+,-$%*&$.)/'('$0&1)
23,.45')6789)!"*%&-(1%'))'&"*4%#$%(+-6#4*4%31%70$*6#*+%8-+%)"*%'2)"-+9$%3*/*8#)%'/4%8-+%)"*%3*/*8#)%%
-8%)"*%'2)"-+9$%#/$)#)2)#-/:%8-+%/-/;&-<<*+&#'0%+*$*'+&":%'/4%*42&')#-/'0%2$*=%!"#$%#/&024*$%,#)"-2)%
0#<#)')#-/%2$*%#/%#/$)+2&)#-/%')%1-2+%#/$)#)2)#-/:%4#$)+#32)#-/%)-%$(*&#8#&%&-00*'.2*$:%'/4%(+-6#4#/.%'%
&-(1%)-%1-2+%#/$)#)2)#-/9$%'4<#/#$)+')-+=%
!
!
!
>00%-)"*+%2$*$:%+*(+-42&)#-/%'/4%4#$)+#32)#-/:%#/&024#/.%,#)"-2)%0#<#)')#-/%&-<<*+&#'0%+*(+#/)$:%$*00#/.%
-+%0#&*/$#/.%&-(#*$%-+%'&&*$$:%-+%(-$)#/.%-/%-(*/%#/)*+/*)%$#)*$:%1-2+%(*+$-/'0%-+%#/$)#)2)#-/9$%,*3$#)*%-+%
+*(-$#)-+1:%'+*%(+-"#3#)*4=%?-+%*@&*()#-/$:%(*+<#$$#-/%<'1%3*%$-2.")%8-+%$2&"%2$*%)"+-2."%70$*6#*+A$%
(*+<#$$#-/$%$#)*%')B%
"))(BCC,,,=*0$*6#*+=&-<C0-&')*C(*+<#$$#-/2$*<')*+#'0%
%
?+-<%D')"*+#/*%E'<*+6'0:%FG0H/*%D#)*+/*:%?0-+#'/%I'33-2+%'/4%J-("#*%K'4-):%
!"*%76-02)#-/%-8%?0-+'0%J1<<*)+1=%
L/B%I*'/;D0'24*%M'4*+%'/4%N#&"*0%E*0$*/1:%*4#)-+$:%%
>46'/&*$%#/%O-)'/#&'0%P*$*'+&"%QR-02<*%STU=%
>&'4*<#&%V+*$$:%WXYX:%(=%ZS=%
LJOKB%[\Z;X;YW;]ZXZ\X;\%
^%D-(1+#.")%WXYX:%70$*6#*+%_)4=%
>&'4*<#&%V+*$$=%
!"#$%&'&()#"(*#*+,#--'",%./("'0'.",1(.*&('&2,.3%#*./(20'(#*/45((
6#3()#"("'7"#&2,3%#*8(&%03"%923%#*(#"(,#--'",%./(20'5(
Author's personal copy
The Evolution of Floral Symmetry
* †,‡
HE
´ LE
` NE CITERNE, FLORIAN JABBOUR, SOPHIE NADOT
†
AND CATHERINE DAMERVAL
*,1
*
UMR de Ge
´ne
´tique Ve
´ge
´tale, CNRS—Univ Paris-Sud—INRA—
AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
Universite
´ Paris-Sud, Laboratoire Ecologie, Syste
´matique, Evolution,
CNRS UMR 8079-AgroParisTech, Orsay, F-91405, France
Institute for Systematic Botany and Mycology, University of Munich,
Menzinger Strasse 67, 80638 Munich, Germany
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86
II. Definitions of Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
III. Symmetry and Flower Development. . . . . . . . . . . . . . . . . . . . . . . . .  93
A. Establishment of Symmetry at Various Stages During
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
B. Impact of Growth and Organ Elaboration on Floral symmetry . 94
C. Developmental Trajectories and Flower Symmetry . . . . . . . . . .  95
IV. Evolution of Flower Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
A. Distribution of Symmetry among Extant Angiosperms . . . . . . .  97
B. Emergence of Zygomorphy during Angiosperm Evolution in
Relation to Insect Diversification . . . . . . . . . . . . . . . . . . . . . . .  98
C. Architecture of Flowers and Inflorescences—What is Their
Impact on Floral Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
V. The Significance of Symmetry in Plant–Pollinator Interactions . . . . .  108
A. Zygomorphy and Outcrossing Strategies . . . . . . . . . . . . . . . . . .  109
All authors contributed equally to this review
1
Corresponding author: E-mail: catherine.damerval@moulon.inra.fr
Advances in Botanical Research, Vol. 54 0065-2296/10 $35.00
Copyright 2010, Elsevier Ltd. All rights reserved. DOI: 10.1016/S0065-2296(10)54003-5
Author's personal copy
86 H. CITERNE ET AL.
B. Pollinator Preferences and their Perception of Symmetry . . . . . .  112
C. Floral Symmetry and Pollination Syndromes . . . . . . . . . . . . . . .  112
D. Variability of Floral Traits in Zygomorphic and Actinomorphic
Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
VI. Molecular Bases of Flower Symmetry. . . . . . . . . . . . . . . . . . . . . . . .  115
A. The Floral Symmetry Gene Regulatory Network in
Antirrhinum Majus .................................. 115
B. CYC-like Genes are Implicated in the Control of Zygomorphy
in Diverse Lineages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
C. Genetic Mechanisms Underlying Changes in Floral Symmetry . . 121
D. Evolution of CYC-like Genes: Functional Implications . . . . . . .  122
E. Beyond CYC: Conservation and Divergence of Other
Components of the Floral Symmetry Network . . . . . . . . . . . . .  124
VII. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
ABSTRACT
Symmetry is a defining feature of floral diversity. Here we review the evolutionary and
ecological context of floral symmetry (adding new data regarding its distribution), as
well as the underlying developmental and molecular bases. Two main types of symmetry
are recognized: radial symmetry or actinomorphy and bilateral symmetry or zygomor-
phy. The fossil record suggests that zygomorphy evolved in various lineages !50 MY
(million years) after the emergence of angiosperms, coinciding with the diversification of
specialized insect pollinators. Among extant angiosperms, zygomorphy is a highly
homoplastic trait, and is associated with species radiation thereby satisfying the defini-
tion of key innovation. The evolution of symmetry may be influenced by clade-specific
floral and inflorescence characteristics, possibly indicating different underlying con-
straints. Ecological studies suggest that zygomorphy may promote cross-fertilization
through increased precision in pollen placement on the pollinator’s body. The molecular
bases of flower symmetry are beginning to be unravelled in core eudicots, and available
evidence underlines the repeated recruitment of CYC2 genes, associated with frequent
gene duplications. Future prospects are discussed, emphasizing symmetry as a model
character for understanding the evolutionary bases of homoplastic floral traits.
I. INTRODUCTION
With more than 260,000 extant species, angiosperms represent about 90% of
terrestrial plant biodiversity. The flower, which is a synapomorphy of the
group, is a fascinating structure in many respects, having a well-conserved
ground plan but tremendous diversity in the size, colour, shape and number of
its parts. As a component of human environment it participates in shaping our
feeling of beauty.
Author's personal copy
87THE EVOLUTION OF FLORAL SYMMETRY
Symmetry is one of the major features taking part in this perception.
There are two principal types of floral symmetry, radial and bilateral
(Section II), the latter having evolved several times independently in angios-
perms (Section IV). Bilateral symmetry is therefore a homoplastic trait,
which poses fascinating questions concerning the homology of underlying
developmental and genetic processes, and the evolutionary forces at work in
the different occurrences. Indeed, such recurrent innovations provide
researchers with ideal models to address the question of the relative impor-
tance of historical contingency, physical and developmental constraints and
selection, in the course of organismal evolution.
As with many other architectural traits, the type of symmetry is often an
integral part of a species’ definition, even though more or less important
deviations from the characteristic type can be observed in natural popula-
tions (Section V). The first floral symmetry mutant was described by
Linnaeus, based on an atypical sample of Linaria vulgaris harvested by
Magnus Zio
¨berg in 1742 in Roslagen (Sweden). The flower was radially
symmetric with five nectar spurs, contrasting with the normal bilaterally
symmetric Linaria flower with just a single spur. Linnaeus called it
“Peloria,” after the Greek word for monster. He proposed that it arose
through fertilization of a normal Linaria by pollen from an alien species
(Linnaeus (1744), discussed in Gustafsson, 1979). Darwin was aware of
peloric forms in a number of species, and he remarked that many Labiateae
and Scrophulariaceae species are prone to such abnormal shapes.
He supposed that pelorism was due to an arrest of development or to
reversion. He made reciprocal crosses between peloric and normal snap-
dragon, and observed that none of the offsprings exhibited peloria; he
reported that “the crossed plants, which perfectly resembled the common
snapdragon, were allowed to sow themselves, and out of a hundred and
twenty-seven seedlings, eighty-eight proved to be common snapdragons,
two were in an intermediate condition between the peloric and normal state,
and thirty-seven were perfectly peloric, having reverted to the structure of
their one grand-parent” (1868). Darwin failed to interpret this segregation
(not significantly different from a Mendelian 3:1 segregation for one domi-
nant gene) and explained the results in the context of his pangenesis
hypothesis, which has now been totally dismissed. Hugo De Vries investi-
gated extensively peloric Linaria; he observed that the typical peloria repro-
duces five times the ventral part of the normal flower, and suspected that
repetitions of other parts could also occur. Indeed, he reported a rare
regular variant with a tubular corolla lacking spurs (cited in Gustafsson,
1979). Nowadays, several peloric mutants are commercialized as horticul-
tural varieties (e.g. in Antirrhinum, Sinningia and orchids).
Author's personal copy
88 H. CITERNE ET AL.
The elucidation of the genetic bases of peloria in Anthirrhinum and Linaria
came more than two centuries after the discovery of peloria, through the
work of E. Coen and R. Carpenter’s group (Section VI). Since these ground-
breaking results, several research groups have been investigating the genetic
origin of symmetry in a growing number of plant families, relying mostly on
a candidate gene approach. In recent years, results have been obtained that
point to a key role of the TCP gene family in independent occurrences of
bilateral symmetry. These advances have prompted several excellent reviews
in the last year (Busch and Zachgo, 2009; Hileman and Cubas, 2009; Jab-
bour et al., 2009a; Preston and Hileman, 2009; Rosin and Kramer, 2009). At
the dawn of a new era in evolutionary biology opened up by high-
throughput DNA sequencing technologies and functional genomics, it may
be of interest to examine what we know about floral symmetry, not only
from a genetic but also from evolutionary, developmental and ecological
points of view. This review explores these various fields in an attempt to
summarize existing knowledge and open new prospects for future research.
II. DEFINITIONS OF SYMMETRY
Symmetry is a geometrical concept that can be applied to either living
organisms or non-living objects. In biology, rotational and reflection sym-
metries are generally sufficient to describe the range of forms (Almeida and
Galego, 2005; Manuel, 2009). Rotational symmetry is defined as the rotation
of an object by an angle of 360˚/n (n>1) that does not change the object. In
reflection (flip or mirror) symmetry, an axis can be defined such that two
points on a perpendicular line to this axis are at equal distance from it; in
other words, this axis defines two mirror images. These two types of sym-
metry have formed the basis for the discrete categories used to describe
flower symmetry.
Floral symmetry is generally defined from an “en face” view at anthesis,
taking into consideration a planar projection of the flower, which justifies
the use of the term “axis” of symmetry. Very few studies of floral symmetry
integrate the three-dimensional structure of the flower (Leppik, 1972), where
it is more appropriate to talk about “planes” of symmetry. The classification
reflecting the three dimensions is complex and unwieldy, and simple defini-
tions of flower types are generally preferred. Nevertheless, taking into
account the three-dimensional structure may be important for understand-
ing the adaptive value of particular shapes in relation to interactions with
pollinators. Although in name floral symmetry refers to the entire structure
with all its constitutive parts (sepals, petals, androecium and gynoecium), the
Author's personal copy
89THE EVOLUTION OF FLORAL SYMMETRY
descriptions apply primarily to the perianth (particularly the corolla) and
sometimes to the androecium. The symmetry of the gynoecium is often
described independently from other floral organs. It is generally defined on
the basis of ovule placentation, that is, according to internal compartmenta-
lization since the carpels are often partially or totally fused (with fused ovary
walls, styles and stigma). Moreover, the gynoecium is often affected by a
reduction in carpel number compared to the merism of the perianth. It is
therefore frequently left out when characterizing floral symmetry.
Flowers appear predominantly symmetrical and rarely asymmetrical.
Among symmetrical flowers, two major types are classically recognized:
radial symmetry—also called polysymmetry or actinomorphy (from the
Greek word aktis a!"#&: sunray), and bilateral symmetry—also called
monosymmetry or zygomorphy (from the Greek word zugon $%&on: a 
device joining two objects together). Actinomorphy is characterized by
both rotational and reflection symmetry. In actinomorphic flowers, all
organs of a same type (i.e. sepals, petals or stamens) are identical in
shape and size, and evenly distributed around the floral receptacle
(Fig. 1B–E). Zygomorphy has only reflection symmetry along a single
axis (Fig. 1G–J). The term zygomorphy was first introduced by the German
botanist Alexander Braun (1835). Zygomorphic flowers have also been
referred to as irregular (Sprengel, 1793), which is misleading in suggesting
an absence of symmetry, or as symmetrical (Mohl, 1837; Wydler, 1844),
which does not strictly differentiate between radial and bilateral symmetry.
Although inappropriate, these terms are still being used in the literature
(see, for instance, Coen et al., 1995; Luo et al., 1996). A rarer type of
symmetry is disymmetry, where two different orthogonal symmetry
axes can be distinguished (Fig. 1N). It occurs in a few clades of magnoliids
(Winteraceae (Ronse De Craene et al., 2003)), basal eudicots
(e.g. Fumarioideae (pers. obs.) and Eupteleaceae (Ren et al., 2007)), and
core eudicots (Oleaceae (Sehr and Weber, 2009), Brassicaceae (Ronse De
Craene et al., 2002; Rudall and Bateman, 2002), Begoniaceae (Rudall and
Bateman, 2002) and Balanophoraceae (Eberwein et al., 2009)).
For most zygomorphic flowers, the single symmetry axis is vertically
oriented, passing through the inflorescence apex (adaxial or dorsal side)
and the subtending bract (abaxial or ventral side). Consistently, bilaterally
symmetrical flowers are also described as dorsoventrally asymmetrical
(Carpenter and Coen, 1990; Coen, 1991). Cases of oblique zygomorphy
(where the symmetry axis deviates from the dorsoventral position)
and transverse zygomorphy (where the symmetry axis is horizontal) occur
in some families. Oblique zygomorphy is found in Sapindaceae and
Vochysiaceae (Eichler, 1878), Musaceae (Lane, 1955; Schumann, 1900;
Author's personal copy
(A) (B) (C) (D) (E)
(F) (G) (H) (I) (J)
(K) (L)
(M)
Flag flower Lip flower
(N) (O) (P) (Q) (R)
90 H. CITERNE ET AL.
Fig. 1. Different types of floral symmetry illustrated by examples from monocots
and eudicots. Symmetry types are represented in A (actinomorphy), F (zygomorphy),
M (disymmetry) and O (asymmetry). Red dotted lines: symmetry axes. B:
Hibiscus sp. (Malvaceae, eudicot), C: Aquilegia vulgaris (Ranunculaceae, eudicot), D:
Nigella damascena (Ranunculaceae, eudicot), E: Iris pseudacorus (Iridaceae, monocot),
G: Corydalis sp. (Papaveraceae s.l., eudicot), H: Orchis militaris (Orchidaceae, monocot),
I: Lobelia tupa (Campanulaceae, eudicot), J: Alstroemeria sp. (Alstroemeriaceae,
monocot), K: flag flower: Lathyrus sp. (Fabaceae, eudicot), L: lip flower: Lamium
galeobdolon (Lamiaceae, eudicot), N: Lamprocapnos spectabilis (Papaveraceae s.l.,
eudicot), P: Vinca minor (Apocynaceae, eudicot), Q: Tibouchina urvilleana
(Melastomataceae, eudicot), R: Strelitzia reginae (Strelitziaceae, monocot). Photographs:
F. Jabbour, except 1N: C. Damerval. (See Color Insert.)
Winkler, 1930), Marantaceae (Kunze, 1985), Solanaceae (Tucker, 1999),
Moringaceae, Bretschneideraceae (now included in Akaniaceae) (Ronse
De Craene et al., 1998, 2000, 2002) and Heliconiaceae (Kirchoff et al.,
2009). Transverse zygomorphy is found in Sabiaceae (Wanntorp and
Ronse De Craene, 2007) and Papaveraceae (Corydalis and Fumaria). In
the latter, however, rotation of the flower pedicel results in vertically
oriented flowers at maturity (Fig. 1G).
Author's personal copy
91THE EVOLUTION OF FLORAL SYMMETRY
The single symmetry axis of zygomorphic flowers can originate from an
unequal distribution of organs at maturity and/or the superimposition of
secondary identities on the basic sepal, petal or stamen identity. Examples
of unequal distribution of organs of a same identity can be found in
Asteridae, where the corolla is organized following a few conserved pat-
terns, the most common being 2|3 (two petals in the dorsal position|three
in the ventral position), 4|1 and 0|5 (Donoghue et al., 1998). The concept
of secondary identity translates morphological differentiation (including
micromorphological specificities) within a given organ type. For example,
in the species Antirrhinum majus (Veronicaceae, Asteridae) where the
corolla has an upper lip formed by two fused petals and a lower lip
formed by the three other petals (2|3 type), three petal identities
(dorsal - single petal—two petals, lateral—two petals and ventral—one
petal) are recorded (Corley et al., 2005; Luo et al., 1996). Similarly, in
Fabaceae, the standard (dorsal—single petal), wings (lateral—two petals)
and keel (ventral—two petals more or less fused) can be considered as
having three different petal identities. The combination of unequal distribu-
tion and secondary identities of petals makes the corolla of many zygo-
morphic flowers appear bilabiate, leading to the definition of two main
types of flowers, namely, lip (or gullet—Faegri and van der Pijl, 1966) and
flag (Endress, 1994). The distinction comes essentially from the placement of
sexual organs in the upper (lip type) or lower (flag type) part of the flower (see
Section V). Lip flowers are essentially found in Lamiales (Fig. 1L), Campa-
nulales, Zingiberales and Orchidales. Flag flowers are encountered in Faba-
ceae (Fig. 1K), in Polygalaceae and in Papaveraceae (Proctor et al., 1996). In
rare cases such as in tribe Delphinieae (Ranunculaceae), secondary identities
develop on spirally inserted organs (Jabbour et al., 2009b).
Symmetry is not constant within natural populations, and small devia-
tions can occur around a main type (see Section V). In addition, within the
discrete categories defined above, a quantitative element can be added to
classify flowers according to the degree of differentiation or deviation from
radial or bilateral symmetry they exhibit. For instance, flowers can be
described as almost actinomorphic, slightly zygomorphic or almost
zygomorphic (Endress, 1999). There are three main developmental causes
for such deviations. First, spiral phyllotaxis implies that organs sharing the
same identity are not inserted on a same plane, resulting in flowers that are,
strictly speaking asymmetric, even though they can appear actinomorphic
or zygomorphic. This is the case in most members of Ranunculaceae, for
instance, in tribe Delphinieae with “zygomorphic” flowers, and in Adonis
and Nigella that have “actinomorphic” flowers. Second, the curvature of
organs or groups of organs can result in a heterogeneous spatial
Author's personal copy
92 H. CITERNE ET AL.
distribution of organs and can also create imperfectly symmetrical flowers
(e.g. both the androecium and gynoecium are curved in Geranium
(zygomorphic; Geraniaceae), Solanum (actinomorphic; Solanaceae) and
Gladiolus (zygomorphic; Iridaceae). Finally, the degree of zygomorphy
can depend on the position of the flower along the inflorescence. In several
groups with actinomorphic flowers, the flower can become slightly zygo-
morphic due to the bending of floral organs when compressed laterally by
neighbouring flowers (Endress, 1999).
Very few species have asymmetric flowers (Fig. 1P–R). Asymmetric
flowers with chaotic organization occur in a few basal angiosperms, where
the innermost perianth organs and the stamens are irregularly arranged
from inception (e.g. in some Zygogynum species (Winteraceae), Endress,
1999). Asymmetry can also be the result of precise developmental processes
that are reproducible among members of the same species (e.g. in Fabaceae,
Lamiales, Orchidaceae and Zingiberales). In this case, asymmetry can be
found in all floral parts (e.g. in Vochysiaceae (Tucker, 1999)) or in just a
single organ type (e.g. in Senna (Caesalpinioideae), where asymmetry affects
only the gynoecium). It can be due to a reduction in organ number, such as
in Cannaceae and Valerianaceae (e.g. flowers in Canna and Centranthus
have a single lateral stamen). Another form of asymmetry is enantiomor-
phy, an asymmetry polymorphism resulting in flowers of two types that are
mirror images. It can be due to the formation of both left- and right-
contorted (sinistrorse or dextrorse) corollas (e.g. Wachendorfia (Haemodor-
aceae), Endress, 1999, 2001a; Helme and Linder, 1992; Senna (Fabaceae),
Marazzi and Endress, 2008; Banksia (Proteaceae), Renshaw and Burgin,
2008), or the deflection of the style to the left or to the right (enantiostyly;
see Graham and Barrett, 1995) such as in Wachendorfia paniculata (Hae-
modoraceae) (Endress, 2001a; Jesson and Barrett, 2002; Jesson et al., 2003;
Ornduff and Dulberger, 1978; Tucker, 1996, 1999) and Paraboea rufescens
(Gesneriaceae) (Gao et al., 2006). In most enantiostylous species, style
deflection is associated with a single pollinating anther opposite the style.
Monomorphic enantiostyly, in which individuals exhibit both flower
morphs (e.g. Solanum rostratum (Endress, 2006)) has been described in at
least 10 monocot and eudicot families, whereas dimorphic enantiostyly,
where the two morphs occur on separate plants, has been recorded only
in seven species belonging to three monocot families (reviewed in Jesson
and Barrett, 2002, 2003). Rarely, only one morph occurs within a species
(Endress, 1999) (e.g. Strobilanthinae (Acanthaceae); Moylan et al., 2004).
Examination of the developmental process leading to enantiostyly has
shown that it resulted from unequal cell division rates at the base of the
style (Douglas, 1997; Jesson et al., 2003).
Author's personal copy
93THE EVOLUTION OF FLORAL SYMMETRY
III. SYMMETRY AND FLOWER DEVELOPMENT
Studies of flower development have benefited from the development of
scanning electronic microscopy in the mid 20th century, and various authors
have made remarkable contributions to our understanding of flower devel-
opment and symmetry (e.g. Endress, 1999; Ronse De Craene, 2003; Tucker,
2003a). The developmental processes underlying the different types of floral
symmetry at anthesis appear highly diverse and provide information regard-
ing the evolution of floral diversity.
A. ESTABLISHMENT OF SYMMETRY AT VARIOUS STAGES DURING
DEVELOPMENT
In the first stages of development, phyllotaxis and direction of organ initiation
are crucial parameters influencing meristem symmetry (Dong et al., 2005;
Tucker, 2002, 2003b). There are two types of phyllotaxis, spiral and whorled.
In some taxa there is a combination of both spiral and whorled phyllotaxis,
with some organs inserted on a spiral and others on whorls (e.g. Aquilegia
(Ranunculaceae) where all organs are inserted on whorls, except sepals
(Tucker and Hodges, 2005)). In spiral phyllotaxis, organs are initiated one at
a time, with an equal time interval (plastochron) between organs of a same
type. In whorled phyllotaxis, initiation of organs of a same type can be
synchronous or unidirectional. Usually, and provided that growth is homo-
geneous, the first organs initiated are the largest at maturity (Goebel, 1905) but 
there are numerous exceptions (e.g. papilionoid corollas and androecia). An
exhaustive list of taxa spanning all major angiosperm clades in which organo-
genesis follows a unidirectional order is given by Tucker (1999).
Zygomorphy can be observed before organ initiation, and persist through-
out development, or can appear later at various stages of development.
For instance, the floral meristem of A. majus has initially the form of a loaf
(oval, thus disymmetric), then becomes pentagonal and lastly zygomorphic
(Vincent and Coen, 2004). According to the authors, zygomorphy is estab-
lished in this species at the 15th plastochron among the 58 identified, that is,
after 9% of the floral developmental sequence, with the acquisition of dorsal
and ventral identities. Another instance of early establishment of zygomorphy
during development is Lotus japonicus (Fabaceae) (Feng et al., 2006), where
the initiation of floral organs is unidirectional (Dong et al., 2005).
Zygomorphy can also be established late in development. The developmental
processes underlying late-onset zygomorphy can include heterogeneous growth,
heterochrony (a temporal shift from the ancestral condition in a developmental
process (Douglas and Tucker, 1996; Rudall and Bateman, 2004; Tucker, 1999))
Author's personal copy
94 H. CITERNE ET AL.
and/or late elaboration of structures such as glands or spurs (Tucker, 1999). Late
zygomorphy appears to be frequent in taxa embedded in groups with predomi-
nantly actinomorphic flowers (Endress, 1999), such as Ranunculaceae (Jabbour
et al., 2009b). In the tribe Delphinieae (Ranunculaceae), it originates from
heterogeneous growth of petals and sepals after ontogenesis is completed, and
the elaboration of spurs on the two petals and single sepal on the adaxial side
(Jabbour et al., 2009b). InIberis amara, which belongs to Brassicaceae, a family
with predominantly actinomorphic flowers, dorsal and ventral petals begin to
grow in a heterogeneous way only after the onset of stamen initiation, leading to
a zygomorphic mature flower (Busch and Zachgo, 2007).
Both early and late zygomorphy occur in the Asteridae. For instance, zygo-
morphy is apparent from the onset of organ initiation in the subfamily Oroban-
chaceae, but it is preceded by an actinomorphic stage during development in the
Plantaginaceae, Bignoniaceae and Lecythidaceae (Tucker, 1999).
B. IMPACT OF GROWTH AND ORGAN ELABORATION ON FLORAL SYMMETRY
Reduction, suppression and differential elaboration of organs determine
structural symmetry sensu Rudall and Bateman (2003), as opposed to zygo-
morphy caused or reinforced by differential petal colouration (Fig. 1J),
displacement or unequal organ expansion during development. Organ
abortion, which can result from totally suppressed or early arrested growth,
is a major determinant of zygomorphy. As a result of heterochrony, an
organ can become progressively aborted at an earlier stage until its total
suppression (e.g. Li and Johnston, 2000; Mitchell and Diggle, 2005). One or
several organ types can be affected. A large monocot group with mostly
zygomorphic flowers by organ reduction is Poales sensu lato (Kellogg, 2000;
Rudall and Bateman, 2004). The three grass lodicules are hypothesized to be
homologous to a single perianth whorl, based on morphological, develop-
mental and genetic evidence (see, for instance, Schmidt and Ambrose, 1998).
Since the dorsal lodicule is absent from most derived grasses (e.g. Hordeum,
Pooideae), the presence of only two ventral lodicules renders the grass
flowers structurally zygomorphic (Rudall and Bateman, 2004).
The female flowers of Stephania dielsiana (Menispermaceae) have a single
sepal, two petals and a single carpel, which makes them zygomorphic due to
organ reduction, compared to the trimerous actinomorphic male flowers
(Wang et al., 2006). In Sinningia cardinalis, A. majus and Rehmannia angulata
(all belonging to different families within Lamiales), the dorsal stamen is
reduced to a staminode and the degree of reduction increases from the former
to the latter, reinforcing the zygomorphic shape of the flower (Endress, 1998).
Strong morphological differentiation at the perianth level is often associated
Author's personal copy
95THE EVOLUTION OF FLORAL SYMMETRY
with alterations in the androecium, including stamen reduction (staminodes)
or even abortion (Rudall and Bateman, 2004). In Gesneriaceae, for instance,
the strength of corolla zygomorphy was found to be associated with alteration
in stamen number (Endress, 1997). In zygomorphic Proteaceae, a bilabiate
perianth is associated with ventral (e.g. Placospermum) or dorsal
(e.g. Synaphea) staminodes (Douglas, 1997; Douglas and Tucker, 1996).
Differential organ elaboration contributes to bilateral symmetry at matur-
ity. It includes fusion, curvature (see Section II) and the formation of glands or
spurs. A well-known example of differential fusion of organs of a same identity
is found in the bilabiate corolla of A. majus, but also in the ligulate flowers of
Asteraceae (which can have two reduced and three large fused petals (2|3),
three fused petals only (Asteroideae), five fused petals (Cichorioideae) or one
reduced and four large fused petals (e.g. Barnadesia) (Ronse De Craene,
2010)). Another example is found in Proteaceae where tepals are fused post-
genitally and their partitioning is either equal, resulting in an actinomorphic
flower, or unequal, rendering the flower zygomorphic (e.g. Lomatia).
Spurs are floral appendages that appear late during development. Their
origin is highly diverse, developing on sepals (e.g. Impatiens (Balsaminaceae)),
petals (e.g. Viola (Violaceae)), receptacular hypanthia (e.g. Tropaeolum (Tro-
paeolaceae)), stamen–petal tubes (e.g. Diascia (Scrophulariaceae)) or at the base
of the ovary (e.g. Pelargonium). The formation of spurs can affect the symmetry
of a flower. When the number of spurs is equal to the merism of the flower
(e.g. Epimedium (Berberidaceae), Aquilegia (Ranunculaceae) and Halenia
(Gentianaceae)), the flower is actinomorphic. Flowers with a single spur
(e.g. Corydalis), or a pair of spurs (e.g. Diascia, Delphinium, Dicentra), are
zygomorphic or disymmetric. The presence of a single spur can also determine
the orientation of the symmetry axis. The development of a spur in species of
Tropaeolum changes the symmetry from oblique to median zygomorphy (Ronse
De Craene and Smets, 2001). It has been shown that in Asteridae the evolution
of floral symmetry is tightly correlated with that of spurs, and that zygomorphy
is a prerequisite for the evolution of single or pairedspurs (Jabbour et al., 2008).
C. DEVELOPMENTAL TRAJECTORIES AND FLOWER SYMMETRY
Following organ initiation, the major determinants of floral symmetry are organ
growth, differentiation and distribution of mature organs. The symmetry of
mature flowers can be largely independent of phyllotaxis and organ initiation,
and flowers with either whorled (with or without unidirectional initiation) or
spiral phyllotaxis can appear actinomorphic or zygomorphic.
Figure 2 proposes theoretical examples combining three developmental
processes taking part in the establishment of flower symmetry at anthesis,
Author's personal copy
Developmental processes Symmetry of adult flower
Initiation I Growth G Differential elaboration D
Homogeneous Iα
Homogeneous Gα
Heterogeneous Gβ
Absent Dα Iα | Gα | Dα
Actinomorphy without change
of symmetry during
development
Present Dβ Iα | Gα | Dβ
Late zygomorphy
Absent Dα Iα | Gβ | Dα
Zygomorphy with a change
of symmetry during
development
Present Dβ Iα | Gβ | Dβ
Zygomorphy with a change
of symmetry during
development
Heterogeneous Iβ
Homogeneous Gα
Heterogeneous Gβ*
Absent Dα Iβ | Gα | Dα
Early zygomorphy
Present Dβ Iβ | Gα | Dβ
Early zygomorphy
Absent Dα Iβ | Gβ* | Dα
Actinomorphy with a change
of symmetry during
development
Present Dβ Iβ | Gβ | Dβ
Zygomorphy with changes
of symmetry during
development
96 H. CITERNE ET AL.
Fig. 2. Theoretical developmental trajectories combining different states for three
processes (organ initiation, growth and differential elaboration) resulting in different types
of floral symmetry. Two states are considered for each process: synchronous (Ia) or 
asynchronous (Ib) initiation, homogeneous (Ga) or heterogeneous (Gb) growth, and
absence (Da) or presence (Db) of differential elaboration. Combining the two states for
the three developmental processes results in eight theoretical outcomes. For example, the
Ib | Gb | Da trajectory has an actinomorphic outcome because the heterogeneous growth
compensates for the unidirectional initiation of organs (indicated by Gb*). Black circle:
floral meristem. Black/gray disk: organ primordium. Black star: elaborated organ. The
colour of disks is lighter for organs initiated later. The size of disks is proportional to the
primordium growth rate. Stars of different shapes represent differentiated organs. Red
line: the single axis of symmetry in zygomorphic stages. (See Color Insert.)
Author's personal copy
97THE EVOLUTION OF FLORAL SYMMETRY
namely, initiation, growth and differential elaboration of organs of a same
type. Two states are considered here for each process: synchronous (Ia) or 
asynchronous (Ib) initiation, homogeneous (Ga) or heterogeneous (Gb)
growth and absence (Da) or presence (Db) of differential elaboration. The
combination of these three processes results in eight developmental trajec-
tories, producing either zygomorphic or actinomorphic flowers at maturity
(Fig. 2). Although this representation oversimplifies complex developmental
processes, it serves to illustrate how similar states at maturity may result
from different developmental pathways, suggesting that the underlying
molecular agents controlling floral symmetry may also be different. Actino-
morphic flowers can originate from disymmetric or zygomorphic develop-
mental stages (Endress, 1994; Ronse De Craene and Smets, 1994). Tsou and
Mori (2007) report cases where symmetry changes more than once during
flower development, such as in Cariniana micrantha (Lecythidaceae) where
flowers are successively zygomorphic (sepals initiate asynchronously, Ib),
then almost actinomorphic (when sepals are initiated, petals initiate and
grow synchronously, Gb), and finally zygomorphic (a hood is derived from
the abaxial rim of the ring meristem, Db) (Endress, 1994; Tsou and Mori,
2007). A similar situation is found in the genus Couroupita (Lecythidaceae)
in which the upper half of the developing flower is initially retarded at first,
resulting in an early zygomorphic stage. The flower becomes actinomorphic
when stamens and carpels initiate and then zygomorphic again when the
androecium proliferates and forms a tongue-like structure with sterile sta-
mens (Endress, 1999, Tsou and Mori, 2007).
Floral zygomorphy thus relies on complex and potentially numerous
developmental trajectories, and this relates to the highly homoplastic nature
of this trait in adult flowers. A detailed knowledge of symmetry changes
during development is important for (1) understanding symmetry transitions
among related species, (2) understanding the repeated establishment of
bilateral symmetry across angiosperms and (3) interpreting genetic data
underlying these morphological changes.
IV. EVOLUTION OF FLOWER SYMMETRY
A. DISTRIBUTION OF SYMMETRY AMONG EXTANT ANGIOSPERMS
Zygomorphy has always been considered a derived trait in angiosperms
compared to actinomorphy. Studies that have attempted to infer the ancestral
features of the first angiosperms (e.g. Doyle and Endress, 2000; Endress and
Doyle, 2009) conclude that the first angiosperms had actinomorphic flowers.
Author's personal copy
98 H. CITERNE ET AL.
The exact number of transitions toward zygomorphy throughout all angios-
perms is unknown. The estimated numbers given in papers that deal with the
evolution of zygomorphy vary according to the paper (e.g. more than 25 in
Cubas, 2004, at least 38 in Zhang et al., 2010). However, it generally reflects
the number of families in which zygomorphy is found, but not the actual
number of transitions from actinomorphy to zygomorphy. Indeed, such
transitions can potentially happen several times within a family. The exact
number of transitions can only be obtained through the detailed reconstruc-
tion of the evolution of the character “floral symmetry” (i.e. character
optimization) on a robust and well-resolved phylogenetic tree of angios-
perms. Variation in the number of families displaying zygomorphy may
be due to changes in the classification of angiosperms. We conducted a
detailed phylogenetic study of the evolution of zygomorphy in angiosperms
using updated phylogenies based on the latest classification (APG3: The
Angiosperm Phylogeny Group, 2009 and http://www.mobot.org/MOBOT/
research/APweb). Our results indicate that zygomorphy evolved only once in
“basal angiosperms” (a paraphyletic assemblage consisting of all angiosperm
taxa that have diverged before the divergence of monocots and eudicots), at
least 23 times independently in monocots (see Section IV.C for more detail)
and at least 46 times independently in eudicots (see Figs. 4 and 5). The number
of independent transitions from actinomorphy to zygomorphy is therefore
much higher (at least 70, almost twice the highest number given in the
literature) than all previously estimated numbers.
Many speciose taxa present strongly zygomorphic flowers (like, for
instance, Faboideae, Orchidaceae, Poaceae or the order Lamiales), which
is consistent with the hypothesis that zygomorphy could play a positive role
in speciation rates. This was rigorously tested using a phylogenetic frame-
work comparing species richness in sister clades differing in their floral
symmetry (Sargent, 2004). In 15 out of 19 sister pairs identified, the lineage
with zygomorphic flowers is significantly more diverse than its sister group
with actinomorphic flowers, which gives strong support to the hypothesis
that zygomorphy is a key innovation.
B. EMERGENCE OF ZYGOMORPHY DURING ANGIOSPERM EVOLUTION IN
RELATION TO INSECT DIVERSIFICATION
The first known angiosperm remains are pollen grains dated to the Hauter-
ivian (130–136 Ma, million years ago) (Fig. 3; Feild and Arens, 2007; Friis
et al., 2006; Frohlich, 2006). The first fossil of a whorled pentamerous flower
with both petals and sepals, considered as a eudicot representative, is
recorded in the Cennomanian (Basinger and Dilcher, 1984), while fossil
Author's personal copy
99THE EVOLUTION OF FLORAL SYMMETRY
Myr
JURASSIC
Late
Early
CRETACEOUS PALEOGENE
71
93
100
112
130
140
125
89
83
65
145
56
34
23
Valanginian
Hauterivian
Barremian
Berriasian
Albian
Aptian
Cennomanian
Turonian
Santonian
Coniacian
Campanian
Maastrichtian
Paleocene
Eocene
Oligocene
First bee fossil: Melittosphex burmensis
Fossils of monoaperturate (black) and triaperturate
(white) pollen grains
Fossils of flower; black: first remains related to
Nympheales; white: first cyclic eudicot flower; light gray:
fossils ancestral to zygomorphic flowers; dark gray:
zygomorphic flower
Fig. 3. Timescale showing the first appearance of important floral features during
angiosperm evolution, based on the fossil record. The vertical black bars indicate two
major diversification periods, which coincide with the appearance of new floral traits
(from Crepet, 2008; Crepet and Niklas, 2009; Dilcher, 2000; Friis et al., 2001, 2006,
2010; Poinar and Danforth, 2006).
flowers with spirally inserted floral parts are dated to the Barremian–Aptian
(Crepet, 2008). Transition to a whorled organization of the flower possibly
opened the way for further floral innovations, which appear especially
numerous during the Turonian geological stage, coinciding with a period
of radiation leading to angiosperm dominance in some floras of the mid-
Cretaceous (Crepet, 2008; Crepet and Niklas, 2009; Friis et al., 2010).
Bilateral symmetry is thought to have first evolved during this first angios-
perm radiation, based on Turonian fossils with asymmetric flowers with
staminodal nectaries that could be considered “precursors” of zygomorphic
flowers, as suggested by their resemblance to the flowers of extant taxa
adapted to specialist pollinators (Crepet, 1996, 2008). Remains of clearly
zygomorphic flowers, as well as brush flowers (with numerous long
stamens), are recorded in Paleocene–Eocene deposits (Fig. 3; Crepet and
Niklas, 2009; Dilcher, 2000).
Author's personal copy
100 H. CITERNE ET AL.
The coevolution of plants and insects has been considered for a long time
to be the primary cause of radiation of plants and of some insect groups
(correspondence between Saporta and Darwin (1877) cited in Friedman,
2009; Grant, 1949; Grimaldi, 1999; but see Waser, 1998; Gorelick, 2001).
Reconstructing the evolution of pollination modes on the phylogeny of
extant basal angiosperms clearly indicates that insect pollination is the
ancestral state (Hu et al., 2008). Early flowering plants may have been
pollinated by a wide diversity of insects such as beetles, primitive moths,
various flies and possibly sphecid wasps ancestral to bees (Bernhardt, 2000;
Grimaldi, 1999; Hu et al., 2008). Extant bees, that comprise many extant
pollinators of zygomorphic flowers, constitute a derived natural group of
spheciform wasps (vegetarian wasps) that almost certainly originated in the
Mid to Late Cretaceous (Grimaldi, 1999; Poinar and Danforth, 2006).
Corbiculate bees (honeybees, bumblebees, orchid bees and stingless bees)
extensively diversified in the Early Tertiary (Grimaldi and Engel, 2005).
Interestingly, the emergence of floral innovations and derived pollinators
co-occurs with the angiosperm radiations of the Turonian (89–93.5 Ma) and
the Upper Paleocene Lower Eocene periods (Crepet and Niklas, 2009). In
addition, a significant correlation was observed between angiosperm species
number and insect family number during Cretaceous–Tertiary geological
stages. Even though correlations cannot be considered to necessarily reflect
causative influence of one group on the other, it may indicate reciprocal
driving mechanisms for diversification (Crepet, 1996). The fossil records
thus indicate that zygomorphy evolved in several plant lineages during the
same period as the rise of some bee families, supporting the hypotheses
of coevolution with these insects as the triggering mechanism for floral
symmetry evolution (e.g. Neal et al., 1998).
C. ARCHITECTURE OF FLOWERS AND INFLORESCENCES—WHAT IS THEIR
IMPACT ON FLORAL SYMMETRY
Perianth symmetry is only one of the numerous floral features that can
present variation. Because bilateral symmetry affects the shape of the
meristem sometimes from the earliest stages of floral development, the
issue of how changes in floral symmetry may have been constrained or
canalysed by other features of the flower or the inflorescence architecture
during the course of evolution can be raised. When flowers are grouped in
inflorescences, they become necessarily constrained by neighbouring flow-
ers during their development, which may potentially affect flower shape at
adult stage. Intrinsic features of flowers such as the number of organ
primordia could also be prone to have such an effect, by exerting sterical
Author's personal copy
101THE EVOLUTION OF FLORAL SYMMETRY
constraints on flower shape. In the following paragraphs, we examine the
relationship between floral symmetry and selected features of flowers and
inflorescences.
1. Flower Symmetry and Inflorescences
It has been suggested that the symmetry of flowers is somewhat linked to the
way they are organized in inflorescences (Coen and Nugent, 1994; Rudall
and Bateman, 2010). Inflorescence architecture among angiosperms is very
diverse, which has led to a complex and sometimes ambiguous typology
(Prenner et al., 2009 and references therein). Two basic types can be distin-
guished based on the fate of the terminal meristem. In cymose inflorescences,
the terminal meristem forms a flower, and inflorescence growth results from
the development of one or more lateral axes, which in turn reiterate this
pattern (sympodial growth). All axes terminate in a flower. In racemose
inflorescences, the terminal meristem promotes inflorescence growth by
producing lateral meristems that will produce either flowers or secondary
axes reiterating the main axis pattern (monopodial growth). Terminal
meristems do not produce flowers but eventually become exhausted. Inflor-
escences can be simple or compound, associating diversely cymose and/or
racemose modules (Prenner et al., 2009).
Inflorescence axes are observed in fossil records as early as flowers, but
their interpretation is very difficult. The particular architecture of the repro-
ductive unit of Archaefructus (Barremian–Aptian), now considered to be
related to Nympheales, has been interpreted either as a multipartite naked
flower with an elongated axis (Sun et al., 2002) or as an ebracteate racemose
inflorescence bearing simple unisexual and naked flowers (Friis et al., 2003).
Several spike-like or even compound inflorescences from the mid-
Cretaceous, densely covered with small flowers, have been found (Friis
et al., 2006). Parkin (1914) suggested that the primitive inflorescence type
is determinate, meaning in its simplest expression a solitary flower (discussed
in Rudall and Bateman, 2010). Morphological analyses of extant “basal”
taxa and fossil records in a phylogenetic framework suggest grouping of
flowers in inflorescence rather than solitary as the ancestral state, but the
ancestral state for inflorescence remains equivocal (Endress and Doyle,
2009). This result apparently comes from the authors’ interpretation of
Archaefructus and the inflorescence of Nympheales as racemose, which is a
matter of debate (Rudall and Bateman, 2010).
Classically, it is stated in the literature that radially symmetric flowers are
found in both racemose and cymose inflorescences whereas zygomorphic
flowers preferentially occur in racemose inflorescences (Coen and Nugent,
Author's personal copy
102 H. CITERNE ET AL.
1994; Dahlgren et al., 1985). Indeed, the meristems of grouped flowers are
embedded in an asymmetric morphogenetic field defined by the flower
subtending bract toward the ventral side and the terminal inflorescence
meristem toward the dorsal side (Coen and Nugent, 1994). The existence
of different cellular or physiological contexts for terminal and lateral mer-
istems can be illustrated by terminal peloria that occurs in species that
normally produce zygomorphic flowers grouped into racemose inflores-
cences. In the centroradialis mutant of A. majus, the inflorescence meristem
shifts to a floral identity, and the resulting terminal flower is radially sym-
metric, very similar to lateral ones in the cycloidea mutant (Clark and Coen,
2002). Terminal peloria in eudicots have also been reported in species
belonging to the Lamiales, Ranunculaceae (Rudall and Bateman, 2004)
and Fumarioideae (Cysticapnos vesicarius, pers. obs.). Morphogenetic gra-
dients may also account for the different symmetry of central and marginal
flowers in derived “flower-like” inflorescences, such as the radiate capitula in
Asteraceae, the corymb of I. amara or the umbels in some Apiaceae (e.g. in
Daucus carota, pers. obs.). It can be speculated that a prerequisite for the
evolution of zygomorphy is the emergence of asymmetric morphogenetic
fields in an inflorescence.
We examined the relationship between floral symmetry and inflorescence
growth pattern (monopodial versus sympodial) by conducting a detailed
comparative study of the evolution of both characters in monocots, taking
into account the most recent phylogenetic advances in this large clade.
Figure 4 presents two mirror phylogenetic trees of the monocots on which
flower symmetry (left-hand tree) and inflorescence type (right-hand tree)
have been optimized using Maximum Parsimony. It shows that zygomorphy
evolved at least 23 times independently from actinomorphy throughout
monocots, and not only in the context of a racemose (indeterminate) inflor-
escence. Zygomorphy evolved together with single flowers in various
families, for example, in Arachnites uniflora (Corsiaceae), in Thismia
americana (Thismiaceae), in Tecophilaea cyanocrocus (Tecophilaeaceae), in
Paphiopedilum appletonianum (Orchidaceae) and in Gethyllis atropurpureum
(Amaryllidaceae) and it is found in association with cymose (at least
the terminal units) inflorescences in several families of Zingiberales
(in Musaceae, Heliconiaceae and Strelitziaceae), in Commelinales (in
Haemodoraceae and Commelinaceae), in Liliales (in Alstroemeriaceae)
and in Asparagales (in Doryanthaceae and Amaryllidaceae). Flowers in
some of these taxa may be quite strongly zygomorphic, like in Zingiberales
or Gilliesia (Amaryllidaceae) for example (with organ reduction and synor-
ganization), indicating that zygomorphy is not necessarily precluded by the
sympodial growth of cymose inflorescences. In other words, in monocots,
Author's personal copy
Type of symmetry Type of inflorescence
Racemose
Actinomorphy
At least terminal units cymose
Zygomorphy
Panicle
Asymmetry
Single flowers
No perianth
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
103THE EVOLUTION OF FLORAL SYMMETRY
Fig. 4. (A) Mirror trees of monocots showing the evolution of perianth symmetry and
inflorescence type, optimized using Maximum Parsimony. Left tree: optimization of
perianth symmetry. Several colours on the same branch denote ambiguity in the ancestral
state. Right tree: optimization of inflorescence type. Several colours on the same branch
denote ambiguity in the ancestral state. Coloured lines refer to the orders of monocots.
Asterisks indicate taxa that produce flowers possessing more than six stamens. The topology
of the tree was established using information from the Angiosperm Phylogeny website
(http://www.mobot.org/MOBOT/research/APweb/) and detailed phylogenies obtained
from the literature when necessary. Species represented in this tree were selected according
the following criteria: (1) all monocot families are represented by at least one species, and (2)
families in which there is variation for at least one of the characters examined are represented
by two or more species. Botanical descriptions were mostly obtained from Dahlgren et al.
(1985). (B) From left to right and top to bottom: names of the terminal taxa (species)
included in the tree. (See Color Insert.)
Author's personal copy
Costus speciosus (Costaceae)
Hedychium coronarium (Zingiberaceae)
Canna glauca (Cannaceae)
Maranthochloa cuspidata (Maranthaceae)
Heliconia magnifica (Heliconiaceae)
Orchidenta maxillarioides (Lowiaceae)
Ravenala madagascariensis (Strelitziaceae)
Phenakospermum guinanense (Strelitziaceae)
Strelitzia reginae (Strelitziaceae)
Musa acuminata (Musaceae)
Haemodorum corymbosum (Haemodoraceae)
Anigozanthos flavidus (Haemodoraceae)
Wachendorfia paniculata (Haemodoraceae)
Heteranthera callifolia (Pontederiaceae)
Pontederia lanceolata (Pontederiaceae)
Philydrum lanuginosum (Phylidraceae)
Hanguana malayana (Hanguanaceae)
Tradescantia sillamontana (Commelinaceae)
Commelina forskalaei (Commelinaceae)
Dasypogon bromeliifolius (Dasypogonaceae)
Poa trivialis (Poaceae)
Oryza sativa (Poaceae)
Ochlandra stridula (Poaceae)
Arundinaria gigantea (Poaceae)
Imperata cylindrica (Poaceae)
Joinvillea plicata (Joinvilleaceae)
Ecdeicolea monostachya (Ecdeiocoleaceae)
Flagellaria guineensis (Flagellariaceae)
Dapsilanthus disjunctus (Restionaceae)
Centrolepis fascicularis (Centrolepidaceae)
Anarthria prolifera (Anarthriaceae)
Lipocarpha occidentalis
Evandra aristata (Cyperaceae)
Scirpus californicus (Cyperaceae)
Carex praeclara (Cyperaceae)
Distichia sp. (Juncaceae)
Juncus castaneus (Juncaceae)
Thurnia sphaerocephala (Thurniaceae)
Mayaca fluviatilis (Mayacaceae)
Eriocaulon taishanense (Eriocaulaceae)
Eriocaulon decangulare (Eriocaulaceae)
Abolboda linearifolia (Eriocaulaceae)
Orectanthe sceptrum (Xyridaceae)
Xyris lacerata (Xyridaceae)
Rapatea paludosa (Rapateaceae)
Pitcairnia xanthocalyx (Bromeliaceae)
Dyckia remotifolia (Bromeliaceae)
Billbergia nutans (Bromeliaceae)
Typha latifolia (Typhaceae)
Sparganium erectum (Sparganiaceae)
Retispatha dumetosa (Arecaceae)
Nypa fruticans (Arecaceae)
Caryota mitis (Arecaceae)
Phoenix dactylifera (Arecaceae)
Phytelephas macrocarpa (Arecaceae)
Phytelephas aequatorialis (Arecaceae)
Synechantus warscewiczianus (Arecaceae)
Cocos nucifera (Arecaceae)
Howea balmoreana (Arecaceae)
Dypsis lutescens (Arecaceae)
Dypsis lantzeana (Arecaceae)
Dypsis mirabilis (Arecaceae)
Neuwiedia inae (Orchidaceae)
Apostasia odorata (Orchidaceae)
Paphiopedilum appletonianum (Orchidaceae)
Vanilla planifolia (Orchidaceae)
Ophrys insectifera (Orchidaceae)
Eulophia andamanensis (Orchidaceae)
Aspidistra dodecandra (Asparagaceae)
Asparagus officinalis (Asparagaceae)
Yucca baccata (Asparagaceae)
Hosta japonica (Asparagaceae)
Aphyllanthes monspeliensis (Asparagaceae)
Sowerbaea juncea (Asparagaceae)
Lomandra insularis (Asparagaceae)
Trichlora lactea (Amaryllidaceae)
Miersia chilensis (Amaryllidaceae)
Leucocoryne purpurea (Amaryllidaceae)
Gillesia graminea (Amaryllidaceae)
Solaria miersiodes (Amaryllidaceae)
Allium vineale (Amaryllidaceae)
Gethyllis atropurpureum (Amaryllidaceae)
Gethyllis ciliaris (Amaryllidaceae)
Sprekelia formosissima (Amaryllidaceae)
Habranthus robustus (Amaryllidaceae)
Lycoris aurea (Amaryllidaceae)
Galanthus nivalis (Amaryllidaceae)
Asphodelus aestivus (Xanthorrhoeaceae)
Haworthia integra (Xanthorrhoeaceae)
Hemerocallis fulva (Xanthorrhoeaceae)
Simethis planifolia (Xanthorrhoeaceae)
Phormium cookianum (Xanthorrhoeaceae)
Arnocrinum gracillimum (Xanthorrhoeaceae)
Xanthorrhoea preissii (Xanthorrhoeaceae)
Xeronema callistemon (Xeronemataceae)
Moraea aristata (Iridaceae)
Isophysis tasmanica (Iridaceae)
Iris germanica (Iridaceae)
Geosiris aphylla (Iridaceae)
Aristea biflora (Iridaceae)
Gladiolus segetum (Iridaceae)
Crocosmia masoniorum (Iridaceae)
Crocosmia paniculata (Iridaceae)
Freesia laxa (Iridaceae)
Crocus angustifolius (Iridaceae)
Romulea citrina (Iridaceae)
Doryanthes palmeri (Doryanthaceae)
Doryanthes ensifolia (Doryanthaceae)
Tecophilaea cyanocrocus (Tecophilaeaceae)
Zephyra elegans (Tecophilaeaceae)
Conanthera bifolia (Tecophilaeaceae)
Cyanella lutea (Tecophilaeaceae)
Cyanella hyacinthoides (Tecophilaeaceae)
Cyanastrum johnstonii (Tecophilaeaceae)
Ixiolirion montanum (Ixioliriaceae)
Borya spetentrionalis (Boryaceae)
Astelia pumila (Asteliaceae)
Lanaria plumosa (Lanariaceae)
Pauridia longituba (Hypoxidaceae)
Curculigo latifolia (Hypoxidaceae)
Curculigo racemosa (Hypoxidaceae)
Hypoxis decumbens (Hypoxidaceae)
Blandfordia grandiflora (Blandfordiaceae)
Calochortus nuttallii (Calochortaceae)
Corsia unguiculata (Corsiaceae)
Arachnites uniflora (Corsiaceae)
Smilax aspera (Smilacaceae)
Heterosmilax japonica (Smilacaceae)
Heterosmilax longiflora (Smilacaceae)
Heterosmilax seisuiensis (Smilacaceae)
Gagea lutea (Liliaceae)
Ripogonum scandens (Ripogonaceae)
Philesia magellanica (Philesiaceae)
Paris quadrifolia (Melanthiaceae)
Chamaelirium luteum (Melanthiaceae)
Chionographis chinensis (Melanthiaceae)
Veratrum album (Melanthiaceae)
Campynema lineare (Campynemataceae)
Colchicum automnale (Colchicaceae)
Petermannia cirrosa (Petermanniaceae)
Luzuriagaria radicans (Luzuriagaceae)
Bomarea pardina (Alstroemeriaceae)
Alstroemeria aurantiaca (Alstroemeriaceae)
Asplundia multistaminata (Cyclanthaceae)
Pandanus candelabrum (Pandanaceae)
Croomia pauciflora (Stemonaceae)
Pentastemona egregia (Stemonaceae)
Triuris hyalina (Triuridaceae)
Barbacenia purpurea (Velloziaceae)
Vellozia prolifera (Velloziaceae)
Dioscorea communis (Dioscoreaceae)
Dioscorea melanophyma (Dioscoreaceae)
Dioscorea convolvulacea (Dioscoreaceae)
Trichopus zeylanicus (Dioscoreaceae)
Stenomeris cumingiana (Dioscoreaceae)
Burmannia madagascariensis (Burmanniaceae)
Thismia americana (Thismiaceae)
Afrothismia pachyantha (Thismiaceae)
Oxygyne triandra (Thismiaceae)
Narthecium ossifragum (Nartheciaceae)
Japonolirion osense (Petrosaviaceae)
Petrosavia stellaris (Petrosaviaceae)
Potamogeton pectinatus (Potamogetonaceae)
Althenia filiformis (Potamogetonaceae)
Zannichellia palustris (Potamogetonaceae)
Zostera marina (Zosteraceae)
Posidonia oceanica (Posidoniaceae)
Cymodocea nodosa (Cymodoceaceae)
Ruppia spiralis (Ruppiaceae)
Maundia triglochinoides (Juncaginaceae)
Triglochin maritimum (Juncaginaceae)
Lilaea scilloides (Juncaginaceae)
Aponogeton hexatepalus (Apotonogetonaceae)
Aponogeton proliferus (Apotonogetonaceae)
Aponogeton madagascariensus (Apotonogetonaceae)
Aponogeton distachyos (Apotonogetonaceae)
Scheuchzeria palustris (Scheuchzeriaceae)
Sagittaria platyphylla (Alismataceae)
Wiesneria triandra (Alismataceae)
Hydrocleys nymphoides (Limnocharitaceae)
Limnocharis flava (Limnocharitaceae)
Butomopsis latifolia (Limnocharitaceae)
Halophila ovalis (Hydrocharitaceae)
Thalassia testudinum (Hydrocharitaceae)
Vallisneria americana (Hydrocharitaceae)
Hydrilla verticillata (Hydrocharitaceae)
Najas marina (Hydrocharitaceae)
Egeria densa (Hydrocharitaceae)
Elodea nuttallii (Hydrocharitaceae)
Stratiotes aloides (Hydrocharitaceae)
Hydrocharis morsus-ranae (Hydrocharitaceae)
Limnobium spongia (Hydrocharitaceae)
Butomus umbellatus (Butomaceae)
Pleea tenuifolia (Tofieldiaceae)
Tofieldia pusilla (Tofieldiaceae)
Lemna minor (Araceae)
Cryptocoryne crispatulata (Araceae)
Pistia stratiotes (Araceae)
Pothos chinensis (Araceae)
Anthurium ramoncaracasii (Araceae)
Acorus calamus (Acoraceae)
Zingiberales
Commelinales
Dasypogonaceae
Poaceae
Arecaceae
Hosta japonica (Asparagaceae)
Liliales
Pandanales
Dioscoreaceae
Petrosaviales
Alismatales
Acorales
B
104
Fig. 4. (Continued)
H. CITERNE ET AL.
Author's personal copy
105THE EVOLUTION OF FLORAL SYMMETRY
bilateral symmetry does not occur exclusively in flowers produced by lateral
meristems. In eudicots, zygomorphic flowers are generally assembled in
racemose inflorescences. A rare exception is the cymose inflorescence of
the zygomorphic Capnoides sempervirens (Fumarioideae), even though
zygomorphy is more fluctuant in the terminal flower than in lateral flowers
(pers. obs.).
2. Floral Constraints on the Evolution of Symmetry
A previous study exploring the relationships between floral symmetry,
merism, number of stamens and presence of spurs in Ranunculales, the
earliest-diverging order in the eudicots, showed that zygomorphy evolved
three times independently and in very different architectural contexts in
this group (Damerval and Nadot, 2007). Another study conducted in the
large Asterid clade, where numerous transitions toward zygomorphy
have occurred (sometimes followed by reversals to actinomorphy) has
shown that zygomorphy is almost never associated with polyandry (i.e. a
number of stamens higher than twice the merism) in this derived eudicot
clade (Jabbour et al., 2008). This study highlights the fact that floral
symmetry may not evolve completely independently from other floral
features. In particular, it suggests that an increase in stamen number
could impede the dorsoventralization of the flower. A similar situation
was found in monocots (Fig. 4) in which only one co-occurrence of
polyandry (defined here as more than six stamens, six being twice the
most widespread type of merism in monocots) and zygomorphy is
observed, within the genus Aponogeton from the basal order Alismatales.
In Rosids, however, several co-occurrences of zygomorphy and polyan-
dry are recorded (Fig. 5). Among the 11 (at least) transitions toward
zygomorphy and the more than 25 transitions toward polyandry (defined
as over twice the merism) recorded in the phylogenetic tree of rosid
families, co-occurrences of both character states are observed five
times. They are found in Emblingiaceae (which produce dimerous flow-
ers with eight or nine stamens), in Begoniaceae, which have dimerous
disymmetric rather than truly zygomorphic flowers, in Resedaceae,
Cleomaceae (in which however, most zygomorphic genera have flowers
with few stamens) and in Chrysobalanaceae. Truly zygomorphic flowers
with numerous stamens are found only in Resedaceae and Chrysobala-
naceae, suggesting that the establishment of zygomorphy might be con-
strained in a polyandrous context, like in the Asterids. Furthermore, like
in the Asterids the presence of spurs (here a single spur) is conditioned
to zygomorphy (Fig. 5). The main difference lies in the fact that in
Author's personal copy
Type of perianth symmetry Number of stamens
Polysymmetry Twice merism or less
Monosymmetry More than twice merism
No perianth (polyandry)
Variable
*
*
*
*
*
*
*
*
*
A
106 H. CITERNE ET AL.
Fig. 5. (A) Mirror trees of Rosids showing the evolution of perianth symmetry and the
state of the androecium (number of stamens) relatively to the merism, optimized using
Maximum Parsimony. Left tree: optimization of perianth symmetry. Several colours on the
same branch denote ambiguity in the ancestral state. Right tree: optimization of the state of the
androecium (number of stamens). Several colours on the same branch denote ambiguity in the
ancestral state. Coloured lines refer to the orders of Rosids. Asterisks indicate taxa that produce
spurred flowers. The topology of the tree was established using information from the
Angiosperm Phylogeny website (http://www.mobot.org/MOBOT/research/APweb/). All
families are included and represent the terminal taxa of the tree. When zygomorphy is present
in addition to actinomorphy within a family, it concerns closely related taxa, therefore the
number of transitions at the family level is a good proxy for the actual number of transitions.
Botanical descriptions were obtained from the AP website, from eFloras (http://www.efloras.
org/), and from Delta (http://delta-intkey.com/angio/www/index.htm). (B) From left to right
and top to bottom: names of the terminal taxa (families) included in the tree. (See Color Insert.)
Author's personal copy
Celastraceae
Lepidobotryaceae
Huaceae
Oxalidaceae
Connaraceae
Brunelliaceae
Cephalotaxaceae
Elaeocarpaceae
Cunoniaceae
Linaceae
Irvingiaceae
Ixonanthaceae
Humiriaceae
Pandaceae
Ochnaceae
Hypericaceae
Podostemaceae
Calophyllaceae
Bonnetiaceae
Clusiaceae
Centroplacaceae
Malpighiaceae
Elatinaceae
Peraceae
Rafflesiaceae
Euphorbiaceae
Picrodendraceae
Phyllanthaceae
Balanopaceae
Chrysobalanaceae
Euphronaceae
Dichapetalaceae
Trigoniaceae
Caryocaraceae
Achariaceae
Goupiaceae
Lacistemataceae
Salicaceae
Violaceae
Passifloraceae
Putranjivaceae
Lophopyxidaceae
Ctenolophonceae
Erythroxylaceae
Rhizophoraceae
Fabaceae-Faboideae
Fabaceae-Mimosoideae
Fabaceae-Caesalpinioideae
Suraniaceae
Polygalaceae
Quillajaceae
Rosaceae
Rhamnaceae
Eleagnaceae
Dirachnaceae
Barbeyaceae
Ulmaceae
Cannabaceae
Moraceae
Urticaceae
Corynocarpaceae
Coriariaceae
Cucurbitaceae
Tetramelaceae
Begoniaceae
Datiscaceae
Anisophylleaceae
Nothofagaceae
Fagaceae
Myricaceae
Rhoipteleaceae
Juglandaceae
Ticodendraceae
Betulaceae
Casuarinaceae
Geraniaceae
Melianthaceae
Francoaceae
Ledocarpaceae
Vivianaceae
Combretaceae
Onagraceae
Lythraceae
Penaeaceae
Alzateaceae
Crypteroniaceae
Melastomataceae
Vochysiaceae
Myrtaceae
Stachyceraceae
Crossosomataceae
Guatemalaceae
Staphyleaceae
Geissolomataceae
Ixerbaceae
Strasburgeriaceae
Aphloiaceae
Picramniaceae
Nitrariaceae
Kirkiaceae
Burseraceae
Anacardiaceae
Simaroubaceae
Meliaceae
Rutaceae
Sapindaceae
Biebersteiniaceae
Gerrardinaceae
Tapisciaceae
Dipentodontaceae
Neuradaceae
Thymeleaceae
Sphaerosepalaceae
Bixaceae
Dipterocarpaceae
Sarcolaenaceae
Cistaceae
Cytinaceae
Muntingiaceae
Malvaceae
Akaniaceae
Tropaeolaceae
Moringaceae
Caricaceae
Setchellanthaceae
Limnanthaceae
Koeberliniaceae
Bataceae
Salvadoraceae
Emblingiaceae
Pentadiplandraceae
Gyrostemonaceae
Resedaceae
Tovariaceae
Capparaceae
Brassicaceae
Cleomaceae
Krameriaceae
Zygophyllaceae
Vitaceae
Peridiscaceae
Cercidiphyllaceae
Daphniphyllaceae
Hamamelidaceae
Altingiaceae
Paeoniaceae
Crassulaceae
Aphanopetalaceae
Tetracarpaceae
Penthoraceae
Haloragaceae
Iteaceae
Grossulariaceae
Saxifragaceae
Dilleniaceae
Gunneraceae
Myrothamnaceae
Celastrales
Oxalidales
Malpighiales
Fabales
Rosales
Cucurbitales
Fagales
Melianthales
Myrtales
Crossosomatales
Picramniales
Sapindales
Huerteales
Malvales
Brassicales
Zygophyllales
Vitales
Saxifragales
Dillenialese
Gunnerales B
107THE EVOLUTION OF FLORAL SYMMETRY
Fig. 5. (Continued)
Author's personal copy
108 H. CITERNE ET AL.
Rosids, unlike in Asterids, zygomorphy has evolved in a limited number
of families and does not characterize large clades (with the exception of
Faboideae (Fabaceae)). Polyandry has evolved frequently throughout the
group and represents a synapomorphy of the speciose subfamily Mimo-
soideae (Fabaceae) as well as of Rosaceae and of the genus Begonia
(Begoniaceae). One striking feature is that many families display varia-
tion in the number of stamens among genera. Rosids are mostly char-
acterized by corollas with free petals whereas Asterids have corollas with
fused petals. Could it be that the former allows more flexibility in floral
organ number than the latter?
Constraints in the evolution of morphological traits may stem from three
different sources that are not necessarily independent: physical, selective and
genetic. Our results suggest that inflorescence and floral architecture do not
influence the evolution of floral symmetry in the same way in all clades,
which invalidates a general role of physical constraints on the evolution of
zygomorphy per se. We focused on the possible evolutionary antagonism
between polyandry and zygomorphy in flowers. From a physical point of
view, it is possible to conceive that the spatial constraints exerted by numer-
ous stamen primordia on the floral meristem are strong at the beginning of
development, but can become relaxed as development proceeds, allowing for
late-onset zygomorphy. From an adaptive point of view, polyandry and
zygomorphy may be viewed as redundant for pollination efficiency. We
argue that polyandry emerging in a zygomorphic context (or the reverse)
may not be positively selected. Indeed, there are few examples of taxa
associating both traits. The unequal distribution of this association between
plant groups (near absent in Asterids but present in Rosids and Ranuncula-
ceae) could suggest variation in the genetic networks underlying both traits.
For instance, in Asterids, the antagonism of polyandry and zygomorphy
could be linked to the role of symmetry genes in inhibiting stamen develop-
ment (see Section VI). It would be of major interest to decipher the genetic
mechanisms involved in taxa where zygomorphy and polyandry co-occur,
such as in Resedaceae (Rosids) or in the Delphinieae (Ranunculales).
V. THE SIGNIFICANCE OF SYMMETRY IN
PLANT–POLLINATOR INTERACTIONS
In this section, we explore the ecological aspects of symmetry and its possible
adaptive value. For ease of comparison, we consider only the flower as the
study object, not lower- (bilabiate structures within flowers such as the
meranthia defined by Westerkamp and Classen-Bockhoff (2007)) or higher-
Author's personal copy
109THE EVOLUTION OF FLORAL SYMMETRY
order (flower-like inflorescences such as capitula of Asteraceae) structures.
We examine to what extent bilateral symmetry can be considered as one
among many mating strategies increasing gene flow and thus potentially
genetic diversity within species. For insects (as for other animal flower
visitors), flowers are potential energetic food sources. In this context, sym-
metry can be perceived as an indicator of the quality and/or quantity of
reward/food, even though floral mimicry may alter this potential relation-
ship (pollination deceit). The capacity of pollinators to perceive symmetry
and discriminate between different types lays the foundation for pollinator-
mediated selection of flower shape, which gives an insight into the potential
role of symmetry in plant population dynamics and species diversification.
A. ZYGOMORPHY AND OUTCROSSING STRATEGIES
Zygomorphy results in a polarized visual signal emitted by the flower, to
which participates the orientation of the symmetry axis. This axis is generally
vertically oriented, thus matching the symmetry plane of flying visitors in
approach. Some studies showed that flower orientation plays a role per se in
orienting the approach and landing behaviour of pollinators (Fenster et al.,
2009; Ushimaru and Hyodo, 2005; Ushimaru et al., 2009), and vertical
orientation has been suggested as being the first evolutionary step toward
the evolution of zygomorphy (Fenster et al., 2009). Morphological differ-
entiation further restricts pollinator access and movement within flowers,
often resulting in improved precision in pollen placement and subsequent
increase in cross-fertilization. Zygomorphy thus appeared as one of numer-
ous contrivances for decreasing selfing and its detrimental effects on
offsprings. In addition, precise pollen placement could form the basis for
reproductive isolation, and thus may promote species diversification.
1. Attributes of Zygomorphic Flowers Promoting Cross-Pollination
The visual signal emitted by zygomorphic flowers is generally borne by the
corolla, with its brilliant colours and polarized morphology. Consistently,
among 38 insect-pollinated Mediterranean species, zygomorphic ones allo-
cate significantly more biomass to the corolla than actinomorphic ones
(Herrera, 2009).
In order to ensure reproductive success, a balance must be achieved
between the amount of pollen deposited on visitors and especially pollina-
tors, and the amount actually transferred to the stigma of another flower.
This is all the more crucial when pollinators are pollen feeders. This is
achieved by adaptations aiming to limit pollen wastage (e.g. poricidal
Author's personal copy
110 H. CITERNE ET AL.
Fig. 6. Interaction between a solitary bee and a flower of Agapanthus africanus
(Amaryllidaceae). Due to the ventral position and curvature of the stamens, pollen
deposition is sternotribic. The style is longer than the filaments, so that the pollinator
comes into contact with the stigma before reaching the anthers. This arrangement favors
cross-pollination. Photograph: S. Nadot.
anthers in buzz-pollinated flowers, which is encountered in some bee-
pollinated species) and to increase precision in pollen placement on the
pollinator’s body (Fig. 6). In this context, zygomorphy of the perianth is
very often supplemented by various devices. For example, rewards—nectar
or oil, less often resins—may be more or less concealed or not easily
accessible, in nectar spur or flower throat. In Antirrhinum and Linaria,
for example, the lower lip is inflated and pressed against the upper lip
(“personate” flower), creating a physical obstacle in front of the nectaries.
Such flowers select for strong bees able to insert their head between the two
lips and open the corolla. Nectar guides are especially elaborate in zygo-
morphic flowers, participating in the internal symmetry, are often yellow—
possibly mimicking anther colour—and attractive to bees (Endress, 1994).
Bilabiate flowers of the lip and flag types (see Section II) are characterized by
contrasted placement of sexual organs. In both types, the lower part of the
flower serves as a landing platform for non-hovering pollinators. Stamens
and stigma are protected by the upper lip in lip-type flowers, and pollen
deposition on pollinators is usually nototribic (on the back). In flag flowers,
Author's personal copy
111THE EVOLUTION OF FLORAL SYMMETRY
stamens and style are enclosed in the lower part of the bilabiate flower,
and pollen deposition is sternotribic (on the ventral part of pollinators).
In addition, special mechanical devices can ensure pollen application,
powered by pollinators as they land on the flower (e.g. trigger system in
Medicago sativa) or as they move in during visitation (e.g. the motile stamens
of Salvia) to reach the reward.
2. Comparison of Zygomorphy with other Mating Strategies Promoting
Outcrossing
Mating strategies promoting cross-pollination include herkogamy (spatial
separation of sexual organs, including various types of stylar polymorph-
isms), dichogamy (temporal separation of male and female maturity,
i.e. protandry or protogyny), self-incompatibility systems, unisexual flowers,
borne on the same (monoecy) or different (dioecy) individuals, and various
combinations of both uni- and bisexual flowers (e.g. gynomonoecy,
gynodioecy). These systems coexist with zygomorphy to a variable extent.
Darwin (1877, cited in Barrett, 2010) considered heterostyly somewhat
functionally redundant with zygomorphy as morphological adaptations
promoting cross-pollination, which is consistent with the rare occurrence
of both characters simultaneously. Barrett et al. (2000) found distyly in a
rare species of the zygomorphic genus Salvia, possibly as a response to a new
environment where protandry was not sufficient to limit intrafloral mating.
In some zygomorphic species, differential spatial arrangements of reproduc-
tive parts have been observed, such as flexistyly (a reciprocal combination of
herko- and dichogamy) in Alpinia species (Zingiberaceae), inversostyly
(reciprocal vertical positioning of sexual organs) in Hemimeris species (Scro-
phulariaceae) or enantiostyly (Section II, and reviewed in Barrett, 2010). In
most enantiostylous species, style deflection is associated with a single polli-
nating anther in opposite direction to the style. This particular configuration
results in pollen deposited on the pollinator’s flank by one type of flower
coming into contact with the stigma of its mirror-image flower (Jesson and
Barrett, 2003). In addition, in some enantiostylous species, anther dimorph-
ism evolved, with the non-pollinating anthers specialized in pollinator feed-
ing. An association between zygomorphy and enantiostyly has been
observed in monocots (Jesson and Barrett, 2003).
Among the two forms of dichogamy, protogyny is common in wind-, bee-
and fly-pollinated flowers, while protandry is predominant in flowers polli-
nated by bees and butterflies (e.g. Endress, 2010). Consistently, an associa-
tion between protandry and zygomorphy has been observed in Asteridae
(Kalisz et al., 2006).
Author's personal copy
112 H. CITERNE ET AL.
B. POLLINATOR PREFERENCES AND THEIR PERCEPTION OF SYMMETRY
Insects constitute the most speciose group of extant plant pollinators, even
though pollination by specific groups of birds, bats and non-flying mammals
also occurs (Cronk and Ojeda, 2008; Endress, 1994; Fleming et al., 2009).
Symmetry as a visual cue may be recognized because of innate preferences or
learning abilities.
Insect were already diverse by the Permian (Whitfield and Kjer, 2008),
which means that their vision began to evolve well before the emergence of
angiosperms, and innate preferences or visual bias may have been recruited
to improve plant–insect relationship up to flower pollination. For instance,
Biesmeijer et al. (2005) established a parallel between floral guides (high
frequency of a dark centre, with radial stripes or dots), insectivorous pitchers
(dark centres, stripes and peripheral dots) and the appearance of the
entrance of the nest of stingless bees. They proposed that plants exploit the
perceptual bias of insects to attract them to specific displays such as flowers.
In tests with artificial flowers, many insect species belonging to Lepidop-
tera, Coleoptera, Hymenoptera and Diptera have been found to prefer the
largest and most symmetric flowers (Mo
¨ller, 2000; Mo
¨ller and Sorci, 1998;
Wignall et al., 2006). Preference for larger flowers is most probably related
to the low resolution of the composite insect eye (Chittka and Raine, 2006).
Bees as a whole constitute the most important group of pollinators with
about 20,000 species (Grimaldi and Engel, 2005), including insects with
different social behaviour (solitary or social), size and various adaptations
for nectar and pollen collection (e.g. Krenn et al., 2005; Thorp, 2000). Bees
have high learning abilities. They are able to discriminate bilateral and radial
symmetry from asymmetry. At a short distance, internal flower symmetry
marked, for instance, by nectar guides may reinforce symmetry perception
(Lehrer, 1999). Among bilaterally symmetrical patterns, bees prefer the
patterns with vertically oriented symmetry plane, and among radially sym-
metric patterns, the ones with radiating bars rather than concentric circles
(Giurfa et al., 1999). Preference for bilaterally symmetric shapes was demon-
strated to be innate in flower-naive bumblebees (Rodriguez et al., 2004). In
many other studies, it is not always clear whether discrimination is based on
innate preference or experience from natural conditions where particular
shapes may be linked to the availability of different rewards (Lehrer, 1999).
C. FLORAL SYMMETRY AND POLLINATION SYNDROMES
The concept of pollination syndrome has been widely debated since its
definition in the 19th century by Federico Delpino (Fenster et al., 2004;
Author's personal copy
113THE EVOLUTION OF FLORAL SYMMETRY
Ollerton et al., 2009; Tripp and Manos, 2008 and references therein). It
translates the observation that similar suites of flower traits can be found in
evolutionarily unrelated taxa as a result of convergent selection by the same
pollinating agent (Faegri and van der Pijl, 1966; Fenster et al., 2004; Proctor
et al., 1996). Functional groups of pollinators have been defined to account
for the observation that many species have flowers visited by large arrays of
pollinator species, and conversely some pollinators visit a large array of
species with different flower shapes. Analysing the Carlinville (Illinois)
flora, Fenster et al. (2004) found that 61% of 86 zygomorphic species were
pollinated by one functional group, significantly more than the 52% observed
among 192 actinomorphic species. The traditional bee pollination syndrome
includes a well-marked tridimensional form—more or less tubular flowers
and most commonly zygomorphic—yellow, blue or purple colour, and nectar
and pollen rewards (Faegri and van der Pijl, 1966; Proctor et al., 1996). This is
not to say that all zygomorphic flowers are bee-pollinated. Indeed, it is
believed the shape associated with bee pollination may have paved the way
for further diversification, for example, bird pollination consistently evolved
from bee pollination, and some bird-pollinated species have strongly
zygomorphic flowers (e.g. Lotus maculatusCronk and Ojeda, 2008).
D. VARIABILITY OF FLORAL TRAITS IN ZYGOMORPHIC AND
ACTINOMORPHIC SPECIES
Because of their specific interaction with a limited number of different
pollinators, it has been proposed that species with zygomorphic flowers
should experience stronger pollinator-mediated stabilizing selection for
flower shape and size than species with actinomorphic flowers (Berg, 1959;
Gong and Huang, 2009; Wolfe and Krstolic, 1999). Consistently, various
studies demonstrate lower variability in flower size in zygomorphic species
than in actinomorphic ones (Herrera et al., 2008; Ushimaru and Hyodo,
2005; van Kleunen et al., 2008; Wolfe and Krstolic, 1999).
While the type of symmetry is generally consubstantial with species defini-
tion, within-species variability around a main type exists, and has been
reported to be partly genetically controlled (Mo
¨ller and Shykoff, 1999).
Departure from perfect symmetry is generally measured as the difference
between the longest and the shortest petal in actinomorphic flowers, and
between the “right” and the “left” petal in zygomorphic ones (e.g. Mo
¨ller
and Eriksson, 1994). More integrative approaches have been attempted,
relying on geometric modelling of shape (Frey et al., 2007; Go
´mez et al.,
2006), which capture more spatial information.
Author's personal copy
114 H. CITERNE ET AL.
Small randomly directed deviations from perfect symmetry in natural
populations are defined as fluctuating asymmetry (Endress, 1999; Mo
¨ller,
2000; Rudall et al., 2002). Factors limiting such asymmetry are synorganiza-
tion and bilateral symmetry. Highly synorganized flowers such as those
encountered in orchids (zygomorphic—Rudall and Bateman, 2002) or 
Apocynaceae (actinomorphic) exhibit low fluctuating asymmetry (Endress,
1999). Low fluctuating asymmetry is also observed in zygomorphic species
compared to actinomorphic ones (Mo
¨ller, 2000), while leaf asymmetry
does not differ between the two categories of plants, suggesting that repro-
ductive traits are subject to differential selective pressures in the two groups,
in contrast to vegetative traits. However, zygomorphic flowers tend to be
larger than actinomorphic ones, and larger flowers generally exhibit less
fluctuating asymmetry than smaller ones; thus, it is difficult to separate the
actual effect of size and symmetry on the level of fluctuating asymmetry
(Mo
¨ller, 2000).
The capacity to better control random variation may be an indication
of “genotype quality,” and the most symmetrical flowers of some species
have been shown to be the richest in nectar (Mo
¨ller, 1995, 2000). In some
species, a low degree of asymmetry was associated with a better seed set
(Mo
¨ller, 2000 for review), but in other ones this association does not hold
(Botto-Mahan et al., 2004; Frey et al., 2005; Weeks and Frey, 2007). Flower
visitation and reproductive success can be affected by a large number of
uncontrolled causes, from environmental factors to biological ones, which
may explain the lack of consistency of these results.
In addition to the variability of individual traits, the level of floral inte-
gration measured by the correlations between the size of floral parts, is also
expected to be higher in zygomorphic than in actinomorphic species because
of the fit with pollinator morphology. Harder and Johnson (2009) found
such a trend in their compilation of 56 studies on 43 animal-pollinated
species.
An integrative view of corolla shape and symmetry has been obtained by
means of geometric morphometrics in the Brassicaceae species Erysimum
mediohispanicum (Go
´mez et al., 2006, 2008b). Shape variations are mainly
found in the width of the petals and their relative distribution, generating
symmetry ranging from actinomorphy to disymmetry and zygomorphy.
The first study, conducted over 2 years in a single population, demonstrates
that the main beetle pollinator preferentially visits disymmetric and zygo-
morphic corollas. In addition, the zygomorphic shape exhibits a higher
fitness, measured by seedling survival (Go
´mez et al., 2006). In a more
extensive study involving three different populations visited by a larger
diversity of pollinator assemblages, it was found that different pollinators
Author's personal copy
115THE EVOLUTION OF FLORAL SYMMETRY
preferred different flower shapes, and that between-population variability in
shape can be accounted for by preference of the major local pollinator.
Pollen and nectar production also varied significantly with corolla shape
(Go
´mez et al., 2008a). The most rewarding flowers matched the artificial
flower shape preferentially visited by bees, suggesting that bees use the visual
cue as an indicator of reward amount. Significant phenotypic selection on
flower shape was observed in all populations of this species (Go
´mez et al.,
2006, 2008b), thus giving an insight in the mechanisms of flower shape
evolution mediated by reward and driven by pollinator preference.
To summarize, zygomorphy results in tighter flower–pollinator interac-
tion than actinomorphy, and probably contributes to increased outcrossing
rates. Several lines of arguments thus support the hypothesis that zygomor-
phy is an adaptive trait that may have brought about species divergence and
species radiation in the past. However, extant populations generally exhibit
low diversity in floral symmetry, making it difficult to compare the selective
values of different types of symmetry.
VI. MOLECULAR BASES OF FLOWER SYMMETRY
A. THE FLORAL SYMMETRY GENE REGULATORY NETWORK IN
ANTIRRHINUM MAJUS
The molecular signals controlling floral symmetry were first described, and are
best understood, in A. majus (Veronicaceae, Lamiales). Wild-type A. majus
flowers have strongly differentiated organs along the dorsoventral axis parti-
cularly in the second and third whorls (petals and stamens). The two dorsal,
two lateral and single ventral petals differ in size, shape, epidermal cell type
and internal symmetry; in particular, the dorsal petal lobes are large and
asymmetric whereas the ventral petal lobe is smaller and bilaterally symme-
trical. The dorsal stamen is arrested to form a staminode, whereas the lateral
and ventral stamen pairs differ in filament length and pilosity. Unequal devel-
opment along the dorsoventral axis is apparent at the start of organogenesis,
with dorsal organs delayed in their initiation (Luo et al., 1996).
Two closely related genes CYCLOIDEA (CYC) and DICHOTOMA
(DICH) have been identified as master control genes for bilateral symmetry
by forward genetic screens (Luo et al., 1996, 1999). Cyc:dich double mutants
have completely radially symmetric flowers with all organs resembling the
ventral phenotype. Single cyc mutants have ventralized lateral organs and
dorsal organs with lateralized features, while dich mutants display altera-
tions of the internal symmetry of the dorsal petals. CYC and DICH are two
Author's personal copy
116 H. CITERNE ET AL.
closely related DNA-binding transcription factors belonging to the TCP
gene family (Cubas et al., 1999b; Luo et al., 1996, 1999). Both genes are
expressed in the dorsal region of the floral meristem throughout its devel-
opment (Luo et al., 1996, 1999). CYC and DICH expression is detectable
prior to organogenesis at the junction of the inflorescence and floral mer-
istem. After all organs are initiated, their expression is limited to the two
dorsal petals and staminode, with DICH having a more restricted expression
in the dorsal half of the dorsal petals (Luo et al., 1996, 1999). CYC, like other
members of the TCP gene family, is believed to affect development by
regulating patterns of cell growth and proliferation (reviewed in Cubas
et al., 2001; Martı
´n-Trillo and Cubas, 2009). In the dorsal staminode, CYC
expression correlates with the downregulation of cell cycle genes such as
HISTONE H4 and CYCLIN D3B (Gaudin et al., 2000). Although the initial
effect of CYC expression on the floral meristem is growth retardation, at
later stages of development its effect as a growth suppressor or promoter is
dependent on organ identity rather than positional cues (Clark and Coen,
2002; Coen and Meyerowitz, 1991; Luo et al., 1996).
CYC and DICH promote dorsal identity in A. majus flowers. By contrast,
ventral identity is controlled by DIVARICATA (DIV), a gene encoding
an MYB transcription factor with two imperfect repeats (R2R3) of the
DNA-binding MYB domain (Almeida et al., 1997; Galego and Almeida,
2002). In loss-of-function div mutants, the ventral region of the corolla
acquires lateral identity (Almeida et al., 1997). DIV is transcribed in all
floral organs early in development and is inhibited post-transcriptionally in
the dorsal and lateral regions through the expression of CYC and DICH
(Galego and Almeida, 2002). At later stages of development when ventral
petals become differentiated from lateral petals, DIV is strongly induced in
the inner layer of epidermal cells of the ventral and adjacent parts of the
lateral corolla lobes (Galego and Almeida, 2002). DIV promotes the expres-
sion of a MIXTA-like MYB gene AmMYBML1 required for the develop-
ment of ventral-specific petal epidermal cell types, in conjunction with
B-class MADS box genes (Perez-Rodriguez et al., 2005).
A gene regulatory network has been proposed for the control of floral
symmetry in A. majus (Costa et al., 2005). CYC is activated upon floral
induction; the molecular trigger is unknown but appears to be independent
of floral meristem identity genes, as CYC is also expressed in the adaxial
region of young axillary shoots adjacent to the inflorescence (Clark and
Coen, 2002). Asymmetric expression in axillary meristems suggests that
CYC responds to a positional cue or gradient within these meristems
(Clark and Coen, 2002). The persistent expression of CYC during floral
development is thought to be maintained by B- and C-function MADS
Author's personal copy
Floral
induction
CYC
DICH
RAD
RAD – independent
pathway
CYCLIN D3B
B-and C-function
MADS box genes
DIV
DIV
DIV AmMYBML1
B -function
MADS box genes
DIV
117THE EVOLUTION OF FLORAL SYMMETRY
proteins such as DEFICIENS and PLENA (Clark and Coen, 2002) as well
as self-positive feedback (Costa et al., 2005). One direct target of CYC and
DICH is RADIALIS (RAD), a single-repeat MYB transcription factor that
has TCP-binding sites in its promoter region and intron (Corley et al., 2005;
Costa et al., 2005). RAD is required to mediate most of the effects of CYC
and DICH; however, residual asymmetry is found in rad mutants suggesting
some effects of CYC are independent of RAD (Corley et al., 2005; Costa
et al., 2005). RAD is closely related to DIV, but has lost the C-terminal MYB
II domain (Corley et al., 2005). Although direct antagonism of RAD and
DIV remains to be demonstrated, this could operate by direct competition
for molecular targets (Corley et al., 2005). RAD is believed to act non-
autonomously on lateral organ development by inhibiting DIV (Corley
et al., 2005). This may occur by cell-to-cell movement of RAD proteins, or
alternatively by the activation of a downstream signalling molecule that
affects lateral development (Corley et al., 2005). The gene interactions
described above are summarized in Fig. 7.
Fig. 7. Major gene interactions regulating floral symmetry in Antirrhinum majus.
Gene transcription and proposed interactions are shown in the different regions (dorsal
(blue), lateral (green) and ventral (orange)) of the floral meristem. Arrows indicate
upregulation, lines terminated by a perpendicular line indicate repression, and dashed
lines for the repression of DIV by RAD in lateral regions represent putative RAD protein
movement or indirect interaction. (See Color Insert.)
Author's personal copy
118 H. CITERNE ET AL.
B. CYC-LIKE GENES ARE IMPLICATED IN THE CONTROL OF ZYGOMORPHY
IN DIVERSE LINEAGES
The extent to which these genes are implicated, and their interactions con-
served, in the elaboration of bilaterally symmetrical flowers has been exam-
ined in diverse groups of angiosperms (Fig. 8). Most studies have focused on
ASTERID
Asterales
Apiales
Dipsacales
Aquifoliales
Lamiales
Solanales
Gontianales
Garryales
Fabales
Rosales
Malpighiales
Myrtales
Brassicales
Malvales
Santalales
Caryophyllales
Saxifragales
Gunnerales
ROSID
d-CYC/DICH e-VmCYC1/VmCYC2
f,g,h-LegCYC1/LegCYC2 (LST1) f,g-LegCYC3 (KEW1)
k-IaTCP1
a,b,c–CYC2 (1-2)
i,j-CYC2B (1-2) i-CYC2A, j-CYC2A/CYC2B-3
Fig. 8. Summary of expression patterns of CYC-like genes (CYC2 clade) during late
developmental stages in the corolla of representative zygomorphic core eudicot species
(phylogeny derived from the Angiosperm Phylogeny website). Asterales: a. Gerbera hybrida
(Broholm et al., 2008), b. Senecio squalidus (Kim et al., 2008), c. Helianthus annuus (Chapman
et al., 2008); Lamiales: d. Antirrhinum majus (Luo et al., 1996, 1999), e. Veronica montana
(Preston et al., 2009); Fabales: f. Lotus japonicus (Feng et al., 2006), g. Pisum sativum (Wang
et al., 2008), h. Lupinus nanus (Citerne et al., 2006); Malpighiales: i.Byrsonima crassifolia,
j. Janusia guaranitica (Zhang et al., 2010); Brassicales: k. Iberis amara (Busch and Zachgo,
2007). Although the predominant expression domain is dorsal (and lateral), ventral expression
is found in Asterales. Expression is also detected on the abaxial side in I. amara but is weaker
(in yellow) than on the dorsal side (orange). The effect on petal growth and development
(acting as growth promoter or suppressor) varies across species. (See Color Insert.)
Author's personal copy
119THE EVOLUTION OF FLORAL SYMMETRY
homologues of CYC/DICH. The Lamiales have evolved zygomorphic flow-
ers from an ancestor with actinomorphic flowers (Coen and Nugent, 1994;
Donoghue et al., 1998; Endress, 2001b), and it is therefore unsurprising that
CYC-like genes are implicated in the control of bilateral symmetry in other
members of this clade. In particular, the persistent expression on the dorsal
side of the developing flower of CYC homologues has been described in
other zygomorphic species of Veronicaceae (Cubas et al., 1999a; Hileman
et al., 2003; Preston et al., 2009) and Gesneriaceae (Du and Wang, 2008; Gao
et al., 2008; Song et al., 2009; Zhou et al., 2008). Notably, variations in the
pattern of stamen development and the degree of petal differentiation along
the dorsoventral axis have frequently been associated with modifications of
CYC-like gene expression. For example, in Mohavea confertiflora (Veroni-
caceae), the abortion of both dorsal and lateral stamens coincides with an
expansion of the expression domain of CYC and DICH homologues from
the dorsal region to the lateral stamen primordia (Hileman et al., 2003).
Similarly, in Chirita heterotricha (Gesneriaceae), an expanded expression
domain (i.e. in both dorsal and lateral regions of the flower) of one CYC
homologue coincides with the abortion of dorsal and lateral stamens (Gao
et al., 2008). In the Lamiales, however, stamen abortion per se is not
necessarily associated with CYC expression, particularly on the ventral
side (Preston et al., 2009; but see Song et al., 2009).
CYC-like genes have been recruited for the control of floral symmetry in
families that have evolved zygomorphy independently of the Lamiales.
Within Rosids, these have been implicated in the control of dorsal (and
sometimes lateral) petal identity in Fabaceae, Brassicaceae and Malpighia-
ceae (Busch and Zachgo, 2007; Feng et al., 2006; Wang et al., 2008; Zhang
et al., 2010). In Papilionoideae (Fabaceae), two closely related CYC-like
genes are expressed in the dorsal region of developing flowers (Citerne
et al., 2006; Feng et al., 2006; Wang et al., 2008); one of these, LOBED
STANDARD 1 (LST1), is an important determinant of dorsal petal identity,
promoting cellular proliferation and epidermal cell differentiation (Feng
et al., 2006; Wang et al., 2008). The other copy appears to have less effect
on phenotype, but may act redundantly to control dorsal petal development
(Wang et al., 2008). A third CYC homologue expressed in the dorsal and
lateral regions of the developing flower, KEELED WINGS 1 (KEW1), is also
a regulator of dorsoventral asymmetry, and determines lateral petal identity
(Feng et al., 2006; Wang et al., 2008). The petals of lst1:kew1 double mutants
have ventral identity in both L. japonicus and Pisum sativum (Feng et al.,
2006; Wang et al., 2008).
Similar expression is found in duplicate CYC-like genes in zygomorphic
Malpighiaceae (Zhang et al., 2010). As in Fabaceae, paralogues exhibit
Author's personal copy
120 H. CITERNE ET AL.
either dorsal or dorsolateral expression late in floral development, a pattern
that is not found in their closest relatives with actinomorphic flowers. Gene
duplication, and consequently functional divergence, has occurred indepen-
dently in Fabaceae and Malpighiaceae (Citerne et al., 2003; Zhang et al.,
2010), and the extent of functional redundancy and specificity remains to be
demonstrated in Malpighiaceae.
Within Brassicaceae, I. amara has been a case study for the control of
late-onset zygomorphy (Busch and Zachgo, 2007). I. amara flowers are
tetramerous with two reduced dorsal petals and two enlarged ventral petals.
A shift occurs during flower development: petals are initiated simultaneously
and grow equally until relatively late in development when, at the onset of
stamen differentiation, unequal adaxial–abaxial petal growth becomes
apparent. A shift is also observed in the expression of the homologue of
CYC in I. amara IaTCP1, which is expressed equally early in development
but becomes strongly expressed in the two dorsal petals relative to the
ventral petals at later developmental stages (Busch and Zachgo, 2007). The
effect of IaTCP1 decreases petal growth and is the opposite of what is
observed in Antirrhinum and Fabaceae (i.e. promoter of petal growth during
late developmental stages), indicative of functional divergence. Constitutive
expression of IaTCP1 in Arabidopsis produces a similar phenotype to when
the endogenous gene TCP1 is constitutively expressed, that is, repressed cell
division reducing vegetative and petal growth, suggesting that DNA targets
and interacting proteins are conserved in Brassicaceae (Busch and Zachgo,
2007). By contrast, the effect on petal growth of heterologous expression of
Antirrhinum CYC in Arabidopsis is enlargement by cell expansion suggesting
that targets and interacting proteins are not conserved between Antirrhinum
and Brassicaceae (Busch and Zachgo, 2007; Costa et al., 2005).
In Asteraceae (Asterid clade like Lamiales), CYC-like genes also regulate
dorsoventral asymmetry but in a novel manner, as a ventralizing factor
(Broholm et al., 2008; Kim et al., 2008). In radiate inflorescences, both
actinomorphic (disc) and zygomorphic (ray) flowers are present: the outer-
most flowers develop enlarged fused petal lobes on the ventral side (the
ligule), and have aborted stamens. Expression of a subset of CYC-like
genes was found predominantly in ray flowers (Broholm et al., 2008; Chap-
man et al., 2008; Kim et al., 2008), in particular on the ventral side promoting
ligule development (Broholm et al., 2008). In Gerbera hybrida, the effects of
constitutive expression of GhCYC2 differ not only with organ type (increas-
ing growth of petals and reducing growth of stamens) but also according to
flower type and position along the capitulum radius (Broholm et al., 2008).
There is less evidence for the involvement of CYC-like genes in the control
of zygomorphy outside the core eudicots. In rice, RETARDED PALEA1
Author's personal copy
121THE EVOLUTION OF FLORAL SYMMETRY
(REP1) promotes the differentiation of the palea and the lemma (which
together function as a calyx surrounding the stamens and carpel) by regulat-
ing cellular expansion and differentiation (Yuan et al., 2009). In Fumarioi-
deae (Papaveraceae), bilaterally symmetric flowers are characterized by the
development of a nectar spur in one of the two outer petals. The asymmetric
expression of one CYC-like gene in the spurred petal of C. sempervirens
could indicate a role in floral zygomorphy but remains to be demonstrated
functionally (Damerval et al., 2007).
C. GENETIC MECHANISMS UNDERLYING CHANGES IN FLORAL SYMMETRY
Modification of key development regulators appears to underlie morpholo-
gical evolution (e.g. Doebley and Lukens, 1998; Wilson et al., 1977; Rosin
and Kramer, 2009). Changes in the timing, duration and localization of
CYC-like gene expression have repeatedly been implicated in changes in
floral symmetry. Case studies have provided examples of different muta-
tional mechanisms. In L. vulgaris, naturally occurring radially symmetrical
mutants have lost CYC expression through extensive methylation of pro-
moter and ORF (Cubas et al., 1999a). Surveys of epigenetic alteration of
gene expression in plants suggest this mode of regulation may play a role in
morphological evolution (Kalisz and Purrugannan, 2004; Rapp and Wendel,
2005); however, no other example has been described so far in the context of
floral symmetry.
In Senecio, interspecific hybridization has been shown to have played a
part in the evolution of a floral symmetry polymorphism (Kim et al.,
2008). In Senecio vulgaris, a species with typically non-radiate inflores-
cences bearing only disc florets, a radiate form has evolved by introgres-
sion of an allele at the RAY locus from Senecio squalidus with radiate
inflorescences. The RAY locus consists of two CYC2 paralogues, and as in
Gerbera, one of these genes appears to promote ventral identity in ray
florets. These genes are specifically expressed in the outer florets, and are
differentially expressed in the two forms. It is believed that changes in cis-
regulatory regions, rather than the ORF, may underlie the differences
between the two morphs.
There are numerous cases of species derived from zygomorphic lineages
that have evolved actinomorphic flowers secondarily. Diverse types of
changes in CYC-like gene expression have been described. In Plantago
lanceolata (Veronicaceae), a wind-pollinated genus with radial tetramerous
flowers, expression of the CYC-homologue PlCYC is detected in flowers
only at later stages of development in all four stamens (in the anther con-
nective and stamen filament) and transiently in the ovaries (Reardon et al.,
Author's personal copy
122 H. CITERNE ET AL.
2009). The actinomorphy in P. lanceolata is therefore correlated with a lack
of both early expression and asymmetric expression in petals. The function
of PlCYC is unknown, but has been proposed to delay stamen development
and therefore promote dichogamy. Unlike other members of Veronicaceae
(Preston et al., 2009), P. lanceolata has only one CYC-like gene, which could
suggest a functionally significant gene-loss event (Reardon et al., 2009).
In Bournea leiophylla (Gesneriaceae), the transition from a zygomorphic
pattern in the early stages of floral development to actinomorphy at anthesis
correlates with the downregulation of the dorsal expression of a CYC-like
and a RAD-like gene (Zhou et al., 2008). By contrast, in Cadia purpurea
(Fabaceae), the derived radial symmetry of the corolla coincides with an
expansion of the expression domain of one CYC-like gene to all petals
(Citerne et al., 2006). It remains to be determined whether these heterochro-
nic and heterotopic changes in gene expression are caused by modifications
in their cis-regulatory regions or in the function or nature of their trans-
acting regulators.
D. EVOLUTION OF CYC-LIKE GENES: FUNCTIONAL IMPLICATIONS
It is believed that morphological evolution proceeds by tinkering of existing
genetic pathways (Jacob, 1977). What is the context of CYC-like gene
evolution that makes them a common player in the repeated evolution of
floral zygomorphy in many lineages? Members of the TCP gene family are
transcription factors that bind to DNA through their characteristic basic
helix–loop–helix domain (bHLH) (Martı
´n-Trillo and Cubas, 2009). CYC
together with its homologue in maize TEOSINTE BRANCHED 1 (TB1)
belong to a clade of class II TCP genes (the ECE clade), whose members are
generally characterized by a second short conserved hydrophilic domain (R
domain) and a conserved motif of amino acids termed “ECE”. Character-
ized genes in this clade appear to have a predominant role in growth repres-
sion (Martı
´n-Trillo and Cubas, 2009). TB1 is a suppressor of axillary
meristem growth (Doebley et al., 1997), but also affects floral development
by suppressing stamen growth in female flowers (Hubbard et al., 2002).
Two major duplication events have occurred in the ECE clade, prior to the
divergence of the core eudicots (Howarth and Donoghue, 2006). All genes
implicated so far in dorsoventral asymmetry of flowers belong to the same
CYC2 clade (Howarth and Donoghue, 2006), whereas genes from the CYC1
and CYC3 clade in Arabidopsis appear to have a role like TB1 in the
development of axillary buds (Aguilar-Martı
´nez et al., 2007; Finlayson,
2007). This could reflect sub/neofunctionalization of major ECE-CYC
lineages in the core eudicots, where the effects on floral development such
Author's personal copy
123THE EVOLUTION OF FLORAL SYMMETRY
as stamen suppression of the CYC/TB1 ancestor were retained and subse-
quently modified in the CYC2 clade.
The dorsal expression of many CYC2 genes is believed to be shared by the
common ancestor of Rosids and Asterids (Cubas et al., 2001). In Arabidopsis
thaliana (Brassicaceae), which has radially symmetrical flowers, the homo-
logue of CYC TCP1, is transiently expressed in the dorsal region of the floral
meristem prior to organogenesis (Cubas et al., 2001). Modification of this
incipient asymmetry through its persistent expression during organ primor-
dia development could account for the repeated evolution of zygomorphy
(Cubas et al., 2001). However, evidence of ventral and radial expression of
CYC2 genes in different lineages suggests lability in the response to local
signals along the dorsoventral axis in the floral meristem. For example, early
expression of IaTCP1 in I. amara is very weak and ubiquitous (Busch and
Zachgo, 2007), and differs from that of Arabidopsis TCP1, which is transi-
ently expressed on the dorsal side of the floral meristem. Without expression
data from other Brassicaceae, it is not clear whether the early asymmetric
pattern is ancestral or derived. Similarly in Malpighiales, the actinomorphic
relatives of the zygomorphic members of family Malpighiaceae (which have
“typical” CYC dorsal expression) differ in their expression of CYC-like
genes; in the closest relative these are expressed uniformly in late-stage
flowers, whereas in the next closest relative no CYC expression is detected
at this stage (Zhang et al., 2010). The role of CYC2 genes in petal develop-
ment also appears to be labile, probably reflecting differences in their inter-
action with other proteins. In different lineages, these genes can either
promote or repress growth through cell proliferation and/or expansion,
and are often associated with cellular differentiation.
Independent duplication of CYC2 genes appears to be a common phe-
nomenon in core eudicots, for example, in Veronicaceae (Preston et al.,
2009), Gesneriaceae (Citerne et al., 2000; Smith et al., 2004, 2006),
Asteraceae (Broholm et al., 2008; Chapman et al., 2008), Dipsacales
(Howarth and Donoghue, 2005), Fabaceae (Citerne et al., 2003; Fukuda
et al., 2003) and Malpighiales (Zhang et al., 2010). Correlation between
floral form and copy number has been postulated in Dipsacales but the
significance of duplications specific to zygomorphic lineages remains to be
demonstrated (Howarth and Donoghue, 2005).
There appears to be flexibility in the fate of duplicate CYC-like genes from
the CYC2 clade, providing scope for morphological evolution and the
elaboration of complex flowers. The duplication, and consequent subfunc-
tionalization, of CYC and DICH is specific to the Antirrhineae (Gu
¨bitz
et al., 2003; Hileman and Baum, 2003). However, in L. vulgaris, although
both CYC and DICH orthologues have been identified (Gu
¨bitz et al., 2003;
Author's personal copy
124 H. CITERNE ET AL.
Hileman and Baum, 2003), loss of CYC activity appears to be sufficient to
generate a fully radial flower (Cubas et al., 1999a) and the function of
Linaria DICH is unknown. The extent of redundancy and/or functional
divergence between paralogues varies among lineages. Nevertheless, there
has been little evidence of shifting patterns of selection acting on CYC-like
genes, either between actinomorphic and zygomorphic lineages or between
duplicate copies (Hileman and Baum, 2003 (Veronicaceae); Smith et al.,
2006 (Gesneriaceae); Reardon et al., 2009 (Veronicaceae); but see Ree
et al., 2004 (Fabaceae)), suggesting that gene biochemical function, beyond
the establishment of zygomorphy, may be conserved at least between closely
related taxa. In Helianthus annuus (Asteraceae), however, positive selection
was detected at multiple sites in the TCP and R domains in CYC2
paralogues with divergent expression patterns (Chapman et al., 2008).
E. BEYOND CYC: CONSERVATION AND DIVERGENCE OF OTHER
COMPONENTS OF THE FLORAL SYMMETRY NETWORK
MYB genes form one of the largest families of transcription factors in plants
and many play a key role in plant development (Du et al., 2009). Recent
reports show that R2R3-MYB genes can also have a role in cell cycle
regulation (reviewed in Cominelli and Tonelli, 2009). In addition, functional
relationships have been described between MYB and bHLH proteins (e.g. in
the production of specialized epidermal cells (Du et al., 2009; Ramsay and
Glover, 2005)). Therefore, MYB genes may be involved in different floral
symmetry gene networks.
The involvement of RAD-like genes in the floral symmetry pathway
appears to be conserved in the Lamiales. Expression of the homologue of
Antirrhinum RAD has been described in other species of Veronicaceae
(Preston and Hileman, 2009) as well as Gesneriaceae (Zhou et al., 2008),
where all show strong expression in the dorsal region of the developing
flower coinciding with CYC-like gene expression. However, in Arabidopsis,
RAD-like genes (AtRLs) do not appear to be activated either by the endo-
genous CYC homologue TCP1 (Baxter et al., 2007) or by constitutively
expressed Antirrhinum CYC (Costa et al., 2005). However, constitutive
expression of Antirrhinum RAD does have developmental effects in Arabi-
dopsis, repressing vegetative growth and development (Baxter et al., 2007).
Therefore, although the ancestor of RAD probably had developmental
functions, both cis- and trans-acting regulators have diverged since the
separation of Antirrhinum and Arabidopsis lineages, and the co-option of
RAD in the regulation of floral symmetry may be specific to the Lamiales
(or Asterids) (Baxter et al., 2007; Costa et al., 2005).
Author's personal copy
125THE EVOLUTION OF FLORAL SYMMETRY
Little is known about the function of DIV-like genes outside of Antirrhi-
num. In Bournea (Gesneriaceae), a genus with flowers showing bilateral
symmetry only during the early stages of development, expression of two
DIV homologues was detected in floral organ primordia irrespective of
position along the dorsoventral axis (Zhou et al., 2008). Outside the
Lamiales, expression of five DIV-like genes in Heptacodium (Caprifoliaceae,
Dipsacales) suggests these are for the most part widely transcribed in floral
organs (Howarth and Donoghue, 2009). However, the interpretation of
expression patterns of DIV-like genes is complicated by the fact that they
may be, as DIV in Antirrhinum, regulated posttranscriptionally (Galego and
Almeida, 2002).
Downstream targets and interacting proteins have not yet been identified
in other lineages. In Pisum (Fabaceae), the SYMMETRIC PETALS 1 locus
affects the internal asymmetry of petals and appears to be antagonized by
KEW and LST1 (Wang et al., 2008). Micromorphological differences
between dorsal, lateral and ventral petal epidermis in Papilionoideae
(Fabaceae) may also implicate MIXTA-like genes, as in Antirrhinum
(Ojeda et al., 2009).
A different regulatory pathway involving MADS-box transcription fac-
tors has been invoked for the elaboration of zygomorphic flowers in Orch-
idaceae (Mondrago
´n-Palomino and Theissen, 2008, 2009; Tsai et al., 2004).
In Phalaenopsis equestris, DEF-like paralogues were found to be differen-
tially expressed in floral organs; in particular PeMADS4 is specifically
expressed in the ventral lip (Tsai et al., 2004). In radially symmetric forms
of P. equestris with three lip-like internal tepals, ectopic expression of
PeMADS4 was detected in each internal tepal suggesting this change in
gene transcription may be associated with the loss of zygomorphy (Tsai
et al., 2004). A model has been proposed where morphological differentia-
tion within the perianth of orchids (i.e. inner versus outer tepals and lateral
versus ventral inner tepals) is associated with different combinations of four
functionally divergent duplicate DEF-like genes (Mondrago
´n-Palomino and
Theissen, 2008, 2009). According to this model, outer tepal identity is
established by one duplicate gene pair (clades 1þ2), whereas inner tepal
identity is established by the combination of clade 1þ2þ3 genes and inner
ventral identity by the combination of clade 1þ2þ3þ4 genes, with variations
in floral morphology attributed to changes in expression of clade 3 and 4
genes (Mondrago
´n-Palomino and Theissen, 2008, 2009). The applicability of
this framework remains to be demonstrated in other Orchidaceae. Never-
theless, it suggests that novel pathways directly involving genes other than
CYC may control floral symmetry in certain lineages, although the involve-
ment of TCP genes providing positional cues is not ruled out.
Author's personal copy
126 H. CITERNE ET AL.
VII. PERSPECTIVES
Floral symmetry is an ideal system for investigating enduring questions in
evolutionary biology such as (1) what is the genetic basis of convergent
evolution and (2) to what extent can natural morphological novelties result
from gradual or saltational evolution? It has been proposed that repeated
evolution of traits controlled by few regulatory loci of major effect is likely
to have a common genetic basis (Gompel and Prud’homme, 2009; Wood
et al., 2005). In all cases examined so far, the genetic control of floral
symmetry involves major regulatory genes where changes in activity can
dramatically alter phenotype. In the core eudicots, the repeated involvement
of CYC2 genes in the elaboration of zygomorphic flowers suggests that a
preexisting genetic pathway is preferentially modified in this group. Never-
theless, many questions remain regarding the establishment and ancestral
function of this pathway. CYC2 genes are present and appear functional in
actinomorphic core eudicot species; however, their function is unknown. A
wider survey of CYC2 expression and function needs to be carried out,
particularly in actinomorphic lineages, to establish whether early dorsal
expression is indeed the ancestral state. In addition, zygomorphy in the
core eudicots appears to be associated with the duplication and functional
divergence of the CYC-like gene lineage. This begs the question whether
zygomorphy in lineages outside of the core eudicots could also be controlled
by TCP genes, and if not, what alternative pathways could underlie this
convergence. The example of Orchidaceae suggests alternative mechanisms
involving subfunctionalization of organ identity genes, but this scenario is
linked with gene duplications that are specific to this family, and cannot be
generalized to other zygomorphic monocot lineages such as Poaceae or
Zingiberales. Reconstructing character evolution in a phylogenetic frame-
work has shown that the flower and inflorescence contexts for the evolution
of symmetry may differ from one clade to another, suggesting different
constraints that may reveal different genetic networks underlying symmetry.
It is unclear whether changes in floral symmetry over evolutionary time
have taken place through gradual or saltational events, for example, through
the appearance of hopeful monsters (Goldschmidt, 1940) possibly involving
homeotic mutants. A new symmetry phenotype emerging in a population
may be maintained because it is able to reproduce vegetatively or self-fertilize,
and because of diverse evolutionary forces, possibly including pollinator-
mediated selection. In the case where self-fertilization is possible, it may
nevertheless lead to inbreeding depression and low selective value of the
novel phenotype. As a rare mutant, it may have more chance to survive in
small populations escaping drift than in large populations, where it will be
Author's personal copy
127THE EVOLUTION OF FLORAL SYMMETRY
easily counter-selected. Very few studies have been able to precisely quantify
the variability of symmetry in natural populations. This probably comes from
the difficulty to formally assess deviations from a dominant type in a manner
that encompasses the complexity of flower morphology, but also from an
apparent lack of within- species variability. Different fitness associated with
different types, as shown in Erysimum mediohispanicum (Go
´mez et al., 2006,
2008b), could constitute a basis for further evolution through gradual
changes. On another hand, the absence (or extreme rarity) of coexistence of
two markedly different types of symmetry in a same species may be the result
of rapid loss of new types, or reproductive isolation promoted by plant–
pollinator interaction leading to successful speciation. In the Fumarioideae
(Papaveraceae), where zygomorphy is due to the loss of one of two nectar
spurs, it is possible to find degrees in spur reduction in a same inflorescence in
Capnoides, but also between species of Corydalis (Lide
´n, 1986). This could
represent an example of gradual changes associated with species divergence.
It has been suggested that homeotic mutants could have played a rare but
important role in establishing new plant lineages (Theissen, 2006), although
this remains to be demonstrated. As far as floral symmetry is concerned,
most homeotic mutants that have been described have radially symmetric
flowers derived from zygomorphic types. In the case of L. vulgaris, the
actinomorphic epimutant may only reproduce vegetatively so that its fitness
may not be linked to its floral phenotype, and its evolutionary significance is
thus difficult to assess (Theissen, 2000, 2006). Species that have evolved
radially symmetric flowers secondarily frequently show changes in
CYC-like genes (such as loss-of-function or heterotopic expression), which
could be sufficient to account for their phenotype. By contrast, no
zygomorphic mutants are known in actinomorphic species, suggesting that
complex genetic pathways are established over time, consistent with the
hypothesis of evolution of zygomorphy through gradual genetic changes.
The hypothesis of a major ancestral event possibly relaxing genetic con-
straints and opening the way for gradual transformations reinforcing the
initial change cannot, however, be easily dismissed. Phylogenetic analyses
pointing to clades exhibiting different degrees in the “severity” of zygomor-
phy derived from an actinomorphic ancestor could help evaluate this
hypothesis. In particular, phenotypes such as “nearly actinomorphic” or
“nearly zygomorphic” could constitute intermediate evolutionary steps
toward the evolution of structural zygomorphy. Analysis of symmetry gene
networks will benefit in the near future from large-scale genomic studies
made easier by high-throughput sequencing. Such extensive comparative
analyses in well-chosen species may help unravel the evolutionary steps in
the making of floral symmetry.
Author's personal copy
128 H. CITERNE ET AL.
ACKNOWLEDGEMENTS
We thank our colleagues for fruitful discussions, and an anonymous
reviewer for constructive comments. HC was supported by a fellowship
from the Agence Nationale de la Recherche program ANR-07-BLAN-
0112-02, and FJ by a fellowship from the Ministe
`re de l’Enseignement
Supe
´rieur et de la Recherche, France.
REFERENCES
Aguilar-Martı
´nez, J.A., Poza-Carrio
´n, C., Cubas, P., 2007. Arabidopsis BRANCHED1
acts as an integrator of branching signals within axillary buds. Plant Cell 19,
458–472.
Almeida, J., Galego, L., 2005. Flower symmetry and shape in Antirrhinum. Int.
J. Dev. Biol. 49, 527–537.
Almeida, J., Rocheta, M., Galego, L., 1997. Genetic control of flower shape in
Antirrhinum majus. Development 124, 1387–1392.
Barrett, S.C.H., 2010. Darwin’s legacy: the forms, function and sexual diversity of
flowers. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365, 351–368.
Barrett, S.C.H., Wilken, D.H., Cole, W.W., 2000. Heterostyly in the Lamiaceae: the
case of Salvia brandegeei. Plant Syst. Evol. 223, 211–219.
Basinger, J.F., Dilcher, D.L., 1984. Ancient bisexual flowers. Science 224, 511–513.
Baxter, C.E., Costa, M.M., Coen, E.S., 2007. Diversification and co-option of RAD-
like genes in the evolution of floral asymmetry. Plant J. 52, 105–113.
Berg, R.L., 1959. A general evolutionary principle underlying the origin of develop-
mental homeostasis. Am. Nat. 93, 103–105.
Bernhardt, P., 2000. Convergent evolution and adaptive radiation of beetle-
pollinated angiosperms. Plant Syst. Evol. 222, 293–320.
Biesmeijer, J.C., Giurfa, M., Koedam, D., Potts, S.G., Joel, D.M., et al., 2005.
Convergent evolution: floral guides, stingless bee nest entrances, and insec-
tivorous pitchers. Naturwissenschaften 92, 444–450.
Botto-Mahan, C., Pohl, N., Medel, R., 2004. Nectar guide fluctuating asymmetry
does not relate to female fitness in Mimulus luteus. Plant Ecol. 174,
347–352.
Braun, A., 1835. Dr. Carl Schimper’s Vortra
¨ge u
¨ber die Mo
¨glichkeit eines
wissenschaftlichen Versta
¨ndnisses der Blattstellung, nebst Andeutung der
hauptsa
¨chlichen Blattstellungsgesetze und insbesondere der neuentdeckten
Gesetze der Aneinanderreihung von Cyclen verschiedener Maasse. Flora 18,
145–192.
Broholm, S.K., Ta
¨htiharju, S., Laitinen, R.A., Albert, V.A., Teeri, T.H., Elomaa, P.,
2008. A TCP domain transcription factor controls flower type specification
along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc. Natl.
Acad. Sci. U.S.A. 105, 9117–9122.
Busch, A., Zachgo, S., 2007. Control of corolla monosymmetry in the Brassicaceae
Iberis amara. Proc. Natl. Acad. Sci. U.S.A. 104, 16714–16719.
Busch, A., Zachgo, S., 2009. Flower symmetry evolution: towards understanding the
abominable mystery of angiosperm radiation. BioEssays 31, 1181–1190.
Carpenter, R., Coen, E., 1990. Floral homeotic mutations produced by transposon-
mutagenesis in Antirrhinum majus. Genes Dev. 4, 1483–1493.
Author's personal copy
129THE EVOLUTION OF FLORAL SYMMETRY
Chapman, M.A., Leebens-Mack, J.H., Burke, J.M., 2008. Positive selection and
expression divergence following gene duplication in the sunflower
CYCLOIDEA gene family. Mol. Biol. Evol. 25, 1260–1273.
Chittka, L., Raine, N.E., 2006. Recognition of flowers by pollinators. Curr. Opin.
Plant Biol. 9, 428–435.
Citerne, H.L., Luo, D., Pennington, R.T., Coen, E., Cronk, Q.C., 2003. A phyloge-
nomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae.
Plant Physiol. 131, 1042–1053.
Citerne, H.L., Mo
¨ller, M., Cronk, Q.C.B., 2000. Diversity of cycloidea-like genes in
Gesneriaceae in relation to floral symmetry. Ann. Bot. 86, 167–176.
Citerne, H.L., Pennington, R.T., Cronk, Q.C., 2006. An apparent reversal in floral
symmetry in the legume Cadia is a homeotic transformation. Proc. Natl.
Acad. Sci. U.S.A. 103, 12017–12020.
Clark, J.I., Coen, E.S., 2002. The cycloidea gene can respond to a common dorso-
ventral prepattern in Antirrhinum. Plant J. 30, 639–648.
Coen, E., 1991. The role of homeotic genes in flower development and evolution.
Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 241–279.
Coen, E., Nugent, J.M., Luo, D.A., Bradley, D., Cubas, P., Chadwick, M., et al.,
1995. Evolution of floral symmetry. Philos. Trans. R. Soc. Lond., B, Biol.
Sci. 350, 35–38.
Coen, E.S., Meyerowitz, E.M., 1991. War of the whorls: genetic interactions control-
ling floral development. Nature 353, 31–37.
Coen, E.S., Nugent, J.M., 1994. Evolution of flowers and inflorescences. Develop-
ment 120, 107–116.
Cominelli, E., Tonelli, C., 2009. A new role for plant R2R3-MYB transcription
factors in cell cycle regulation. Cell Res. 19, 1231–1232.
Corley, S.B., Carpenter, R., Copsey, L., Coen, E., 2005. Floral asymmetry involves
an interplay between TCP and MYB transcription factors in Antirrhinum.
Proc. Natl. Acad. Sci. U.S.A. 102, 5068–5073.
Costa, M.M., Fox, S., Hanna, A.I., Baxter, C., Coen, E., 2005. Evolution of regulatory
interactions controlling floral asymmetry. Development 132, 5093–5101.
Crepet, W.L., 1996. Timing in the evolution of derived floral characters: Upper
Cretaceous (Turonian) taxa with tricolpate and tricolpate-derived pollen.
Rev. Palaeobot. Palynol. 90, 339–359.
Crepet, W.L., 2008. The fossil record of angiosperms: requiem or renaissance? Ann.
Mo. Bot. Gard. 95, 3–33.
Crepet, W.L., Niklas, K.J., 2009. Darwin’s second “abominable mystery”: why are
there so many angiosperm species? Am. J. Bot. 96, 366–381.
Cronk, Q., Ojeda, I., 2008. Bird-pollinated flowers in an evolutionary and molecular
context. J. Exp. Bot. 59, 715–727.
Cubas, P., 2004. Floral zygomorphy, the recurring evolution of a successful trait.
Bioessays 26, 1175–1184.
Cubas, P., Coen, E., Zapater, J.M., 2001. Ancient asymmetries in the evolution of
flowers. Curr. Biol. 11, 1050–1052.
Cubas, P., Lauter, N., Doebley, J., Coen, E., 1999b. The TCP domain: a motif found in
proteins regulating plant growth and development. Plant J. 18, 215–222.
Cubas, P., Vincent, C., Coen, E., 1999a. An epigenetic mutation responsible for
natural variation in floral symmetry. Nature 401, 157–161.
Dahlgren, R.M.T., Clifford, H.T., Yeo, P.F., 1985. The Families of the Monocoty-
ledons (Structure, Evolution, and Taxonomy), Springer, Berlin.
Damerval, C., Le Guilloux, M., Jager, M., Charon, C., 2007. Diversity and evolution
of CYCLOIDEA-like TCP genes in relation to flower development in
Papaveraceae. Plant Physiol. 143, 759–772.
Author's personal copy
130 H. CITERNE ET AL.
Damerval, C., Nadot, S., 2007. Evolution of perianth and stamen characteristics
with respect to floral symmetry in Ranunculales. Annals of Botany 100,
631–640.
Darwin, C., 1868. The Variation of Animals and Plants Under Domestication,
J. Murray, London.
Darwin, C., 1877. The different forms of flowers on plants of the same species,
John Murray, London.
Dilcher, D., 2000. Toward a new synthesis: major evolutionary trends in the angios-
perm fossil record. Proc. Natl. Acad. Sci. U.S.A. 97, 7030–7036.
Doebley, J., Lukens, L., 1998. Transcriptional regulators and the evolution of plant
form. Plant Cell 10, 1075–1082.
Doebley, J., Stec, A., Hubbard, L., 1997. The evolution of apical dominance in maize.
Nature 386, 485–488.
Dong, Z.C., Zhao, Z., Liu, C.W., Luo, J.H., Yang, J., Huang, W.H., et al., 2005.
Floral patterning in Lotus japonicus. Plant Physiol. 137, 1272–1282.
Donoghue, M.J., Ree, R.H., Baum, D.A., 1998. Phylogeny and the evolution of
flower symmetry in the Asteridae. Trends Plant Sci. 3, 311–317.
Douglas, A.W., 1997. The developmental basis of morphological diversification
and synorganization in flowers of Conospermeae (Stirlingia and Conosper-
minae, Proteaceae). Int. J. Plant Sci. 158, S13–S48.
Douglas, A.W., Tucker, S.C., 1996. Comparative floral ontogenies among Persoo-
nioideae including Bellendena (Proeaceae). Am. J. Bot. 83, 1528–1555.
Doyle, J.A., Endress, P.K., 2000. Morphological phylogenetic analysis of basal
angiosperms: comparison and combination with morphological data. Int.
J. Plant Sci. 161, S121–S153.
Du, H., Zhang, L., Liu, L., Tang, X.F., Yang, W.J., Wu, Y.M., et al., 2009.
Biochemical and molecular characterization of plant MYB transcription
factor family. Biochemistry (Moscow) 74, 1–11.
Du, Z.Y., Wang, Z.Y., 2008. Significance of RT-PCR expression patterns of CYC-like
genes in Oreocharis benthamii (Gesneriaceae). J. Syst. Evol. 46, 23–31.
Eberwein, R., Nickrent, D.L., Weber, A., 2009. Development and morphology of
flowers and inflorescences in Balanophora papuana and B. elongata (Bala-
nophoraceae). Am. J. Bot. 96, 1055–1067.
Eichler, A.W., 1878. Blu
¨thendiagramme Constructert und Erla
¨utert, Engelmann, Leipzig.
Endress, P.K., 1994. Diversity and Evolutionary Biology of Tropical Flowers,
Cambridge University Press, Cambridge, UK.
Endress, P.K., 1997. Antirrhinum and the Asteridae—evolutionary changes of floral
symmetry. Symp. Soc. Exp. Biol. 51, 133–140.
Endress, P.K., 1998. Antirrhinum and Asteridae—evolutionary changes of floral
symmetry. Symp. Soc. Exp. Biol. 51, 133–140.
Endress, P.K., 1999. Symmetry in flowers: diversity and evolution. Int. J. Plant Sci.
160, S3–S23.
Endress, P.K., 2001a. Evolution of floral symmetry. Curr. Opin. Plant Biol. 4, 86–91.
Endress, P.K., 2001b. The flower in extant basal angiosperms and inferences on
ancestral flowers. Int. J. Plant Sci. 162, 1111–1140.
Endress, P.K., 2006. Angiosperm floral evolution, morphological developmental
framework. Adv. Bot. Res. 44, 1–61.
Endress, P.K., 2010. The evolution of floral biology in basal angiosperms. Philos.
Trans. R. Soc. Lond., B, Biol. Sci. 365, 411–421.
Endress, P.K., Doyle, J.A., 2009. Reconstructing the ancestral angiosperm flower
and its initial specializations. Am. J. Bot. 96, 22–66.
Faegri, K., van der Pijl, L., 1966. The Principle of Pollination Ecology, Pergamon
Press, Oxford.
Author's personal copy
131THE EVOLUTION OF FLORAL SYMMETRY
Feild, T.S., Arens, N.C., 2007. The ecophysiology of early angiosperms. Plant Cell
Environ. 30, 291–309.
Feng, X., Zhao, Z., Tian, Z., Xu, S., Luo, Y., Cai, Z., et al., 2006. Control of petal
shape and floral zygomorphy in Lotus japonicus. Proc. Natl. Acad. Sci.
U.S.A. 103, 4970–4975.
Fenster, C.B., Armbruster, W.S., Dudash, M.R., 2009. Specialization of flowers:
is floral orientation an overlooked first step? New Phytol. 183, 502–506.
Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., Thomson, J.D., 2004.
Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol.
Syst. 35, 375–403.
Finlayson, S.A., 2007. Arabidopsis Teosinte Branched 1-like 1 regulates axillary bud
outgrowth and is homologous to monocot Teosinte Branched1. Plant Cell
Physiol. 48, 667–677.
Fleming, T.H., Geiselman, C., Kress, W.J., 2009. The evolution of bat pollination: a
phylogenetic perspective. Ann. Bot. 104, 1017–1043.
Frey, F.M., Davis, R., Delph, L.F., 2005. Manipulation of floral symmetry does
not affect seed production in Impatiens pallida. Int. J. Plant Sci. 166, 659–662.
Frey, F.M., Robertson, A., Bukoski, M., 2007. A method for quantifying rotational
symmetry. New Phytol. 175, 785–791.
Friedman, W.E., 2009. The meaning of Darwin’s “abominable mystery”. Am. J. Bot.
96, 5–21.
Friis, E.M., Doyle, J.A., Endress, P.K., Leng, Q., 2003. Archaefructus—angiosperm
precursor or specialized early angiosperm? Trends Plant Sci. 8, 369–373.
Friis, E.M., Pedersen, K.R., Crane, P.R., 2001. Fossil evidence of water lilies
(Nympheales) in the Early Cretaceous. Nature 410, 357–360.
Friis, E.M., Pedersen, K.R., Crane, P.R., 2006. Cretaceous angiosperm flowers: inno-
vation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol.
Palaeoecol. 232, 251–293.
Friis, E.M., Pedersen, K.R., Crane, P.R., 2010. Diversity in obscurity: fossil flowers
and the early history of angiosperms. Philos. Trans. R. Soc. Lond., B, Biol.
Sci. 365, 369–382.
Frohlich, M.W., 2006. Recent developments regarding the evolutionary origin of
flowers. Adv. Bot. Res. 44, 63–127.
Fukuda, T., Yokoyama, J., Maki, M., 2003. Molecular evolution of cycloidea-like
genes in Fabaceae. J. Mol. Evol. 57, 588–597.
Galego, L., Almeida, J., 2002. Role of DIVARICATA in the control of dorsoventral
asymmetry in Antirrhinum flowers. Genes Dev. 16, 880–891.
Gao, J.-Y., Ren, P.-R., Yang, Z.-H., Li, Q.-J., 2006. The pollination ecology of
Paraboea rufescens (Gesneriaceae): a buzz-pollinated tropical herb with
mirror-image flowers. Ann. Bot. 97, 371–376.
Gao, Q., Tao, J.H., Yan, D., Wang, Y.Z., Li, Z.Y., 2008. Expression differentiation of
CYC-like floral symmetry genes correlated with their protein sequence diver-
gence in Chirita heterotricha (Gesneriaceae). Dev. Genes Evol. 218, 341–351.
Gaudin, V., Lunness, P.A., Fobert, P.R., Towers, M., Riou-Khamlichi, C., Murray,
J.A., et al., 2000. The expression of D-cyclin genes defines distinct develop-
mental zones in snapdragon apical meristems and is locally regulated by the
Cycloidea gene. Plant Physiol. 122, 1137–1148.
Giurfa, M., Dafni, A., Neal, P.R., 1999. Floral symmetry and its role in plant-
pollinator systems. Int. J. Plant Sci. 160, S41–S50.
Goebel, K., 1905. Organography of Plants. 1. General Organography; 2. Special
Organography, Oxford University Press, Oxford.
Goldschmidt, R., 1940. The Material Basis of Evolution, Yale University Press, New
Haven.
Author's personal copy
132 H. CITERNE ET AL.
Go
´mez, J.M., Bosch, J., Perfectti, F., Ferna
´ndez, J.D., Abdelaziz, M., Camacho, J.P.
M., 2008a. Spatial variation in selection on corolla shape in a generalist
plant is promoted by the preference patterns of its local pollinators. Proc.
R. Soc. Lond., B, Biol. Sci. 275, 2241–2249.
Go
´mez, J.M., Bosch, J., Perfectti, F., Ferna
´ndez, J.D., Abdelaziz, M., Camacho, J.P.
M., 2008b. Association between floral traits and rewards in Erysimum
mediohispanicum (Brassicaceae). Ann. Bot. 101, 1413–1420.
Go
´mez, J.M., Perfectti, F., Camacho, J.P.M., 2006. Natural selection on Erysimum
mediohispanicum flower shape: insights into the evolution of zygomorphy.
Am. Nat. 168, 531–545.
Gompel, N., Prud’homme, B., 2009. The causes of repeated genetic evolution. Dev.
Biol. 332, 36–47.
Gong, Y.B., Huang, S.Q., 2009. Floral symmetry: pollinator-mediated stabilizing
selection on flower size in bilateral species. Proc. R. Soc. Lond., B, Biol. Sci.
276, 4013–4020.
Gorelick, R., 2001. Did insect pollination cause increased seed plant diversity? Biol.
J. Linn. Soc. Lond. 74, 407–427.
Graham, S.W., Barrett, S.C.H., 1995. Phylogenetic systematics of Pontederiales:
implications for breeding-system evolution. In: Monocotyledons: Systema-
tics and Evolution (Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J.
(Eds.)), Royal Botanic Gardens, Kew, UK, pp. 415–441.
Grant, V., 1949. Pollination systems as isolating mechanisms in angiosperms.
Evolution 3, 82–97.
Grimaldi, D., 1999. The co-radiations of pollinating insects and angiosperms in the
Cretaceous. Ann. Mo. Bot. Gard. 86, 373–406.
Grimaldi, D., Engel, M.S., 2005. Evolution of the Insects, Cambridge University
Press, Cambridge, UK.
Gu
¨bitz, T., Caldwell, A., Hudson, A., 2003. Rapid molecular evolution of
CYCLOIDEA-like genes in Antirrhinum and its relatives. Mol. Biol.
Evol. 20, 1537–1544.
Gustafsson, A., 1979. Linnaeus’ peloria: the history of a monster. Theor. Appl.
Genet. 54, 241–248.
Harder, L.D., Johnson, S.D., 2009. Darwin’s beautiful contrivances: evolutionary
and functional evidence for floral adaptation. New Phytol. 183, 530–545.
Helme, N., Linder, H., 1992. Morphology, evolution and taxonomy of Wachendorfia
(Haemodoraceae). Bothalia 22, 59–75.
Herrera, J., 2009. Visibility vs. biomass in flowers: exploring corolla allocation in
Mediterranean entomophilous plants. Ann. Bot. 103, 1119–1127.
Herrera, J., Arista, M., Ortiz, P.L., 2008. Perianth organization and intra-specific
floral variability. Plant Biol. 10, 704–710.
Hileman, L.C., Baum, D.A., 2003. Why do paralogs persist? Molecular evolution of
CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veroni-
caceae). Mol. Biol. Evol. 20, 591–600.
Hileman, L.C., Cubas, P., 2009. An expanded evolutionary role for flower symmetry
genes. J. Biol. 8, 90.
Hileman, L.C., Kramer, E.M., Baum, D.A., 2003. Differential regulation of symme-
try genes and the evolution of floral morphologies. Proc. Natl. Acad. Sci.
U.S.A. 100, 12814–12819.
Howarth, D.G., Donoghue, M.J., 2005. Duplications in CYC-like genes from Dip-
sacales correlate with floral form. Int. J. Plant Sci. 166, 357–370.
Howarth, D.G., Donoghue, M.J., 2006. Phylogenetic analysis of the “ECE” (CYC/
TB1) clade reveals duplications predating the core eudicots. Proc. Natl.
Acad. Sci. U.S.A. 103, 9101–9106.
Author's personal copy
133THE EVOLUTION OF FLORAL SYMMETRY
Howarth, D.G., Donoghue, M.J., 2009. Duplications and expression of
DIVARICATA-like genes in Dipsacales. Mol. Biol. Evol. 26, 1245–1258.
Hu, S.S., Dilcher, D.L., Jarzen, D.M., Taylor, D.W., 2008. Early steps of angiosperm-
pollinator coevolution. Proc. Natl. Acad. Sci. U.S.A. 105, 240–245.
Hubbard, L., McSteen, P., Doebley, J., Hake, S., 2002. Expression patterns and
mutant phenotype of teosinte branched1 correlate with growth suppression
in maize and teosinte. Genetics 162, 1927–1935.
Jabbour, F., Damerval, C., Nadot, S., 2008. Evolutionary trends in the flowers
of Asteridae: is polyandry an alternative to zygomorphy? Ann. Bot. 102,
153–165.
Jabbour, F., Nadot, S., Damerval, C., 2009a. Evolution of floral symmetry: a state of
the art. C. R. Biol. 332, 219–231.
Jabbour, F., Ronse De Craene, L.P., Nadot, S., Damerval, C., 2009b. Establishment
of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe
Delphinieae (Ranunculaceae). Ann. Bot. 104, 809–822.
Jacob, F., 1977. Evolution and tinkering. Science 196, 1161–1166.
Jesson, L.K., Barrett, S.C.H., 2002. The genetics of mirror-image flowers. Proc.
R. Soc. Lond., B, Biol. Sci. 269, 1835–1839.
Jesson, L.K., Barrett, S.C.H., 2003. The comparative biology of mirror-image flow-
ers. Int. J. Plant Sci. 164, S237–S249.
Jesson, L.K., Kang, J., Wagner, S.L., Barrett, S.C.H., Dengler, N.G., 2003. The
development of enantiostyly. Am. J. Bot. 90, 183–195.
Kalisz, S., Purugganan, M.D., 2004. Epialleles via DNA methylation: consequences
for plant evolution. Trends Ecol. Evol. 19, 309–314.
Kalisz, S., Ree, R.H., Sargent, R.D., 2006. Linking floral symmetry genes to breeding
system evolution. Trends Plant Sci. 11, 568–573.
Kellogg, E.A., 2000. The grasses: a case study in macroevolution. Annu. Rev. Ecol.
Syst. 31, 217–238.
Kim, M., Cui, M.L., Cubas, P., Gillies, A., Lee, K., Chapman, M.A., et al., 2008.
Regulatory genes control a key morphological and ecological trait
transferred between species. Science 322, 1116–1119.
Kirchoff, B.K., Lagomarsino, L.P., Newman, W.H., Bartlett, M.E., Specht, C.D.,
2009. Early floral development of Heliconia latispatha (Heliconiaceae), a
key taxon for understanding the evolution of flower development in the
Zingiberales. Am. J. Bot. 96, 580–593.
Krenn, H.W., Plant, J.D., Szucsich, N.U., 2005. Mouthparts of flower-visiting
insects. Arthropod Struct. Dev. 34, 1–40.
Kunze, H., 1985. Die Infloreszenzen der Marantaceen und ihr Zusammenhang mit
dem Typus der Zingiberales- Synfloreszenz. Beitr. Biol. Pflanz. 60, 93–140.
Lane, I.E., 1955. Genera and generic relationships in Musaceae. Mitt. Bot. Staats-
sammlung, Mu
¨nchen 2, 114–131.
Lehrer, M., 1999. Shape perception in the honeybee: symmetry as a global frame-
work. Int. J. Plant Sci. 160, S51–S65.
Leppik, E.E., 1972. Origin and evolution of bilateral symmetry in flowers. Evol. Biol.
5, 49–85.
Li, P., Johnston, M.O., 2000. Heterochrony in plant evolutionary studies through the
twentieth century. Bot. Rev. 66, 57–88.
Lide
´n, M., 1986. Synopsis of Fumarioideae (Papaveraceae) with a monograph of the
tribe Fumarieae. Opera Bot. 88, 1–133.
Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J., Coen, E., 1999. Control of
organ asymmetry in flowers of Antirrhinum. Cell 99, 367–376.
Luo, D., Carpenter, R., Vincent, C., Copsey, L., Coen, E., 1996. Origin of floral
asymmetry in Antirrhinum. Nature 383, 794–799.
Author's personal copy
134 H. CITERNE ET AL.
Manuel, M., 2009. Early evolution of symmetry and polarity in metazoan body plans.
C. R. Biol. 332, 184–209.
Marazzi, B., Endress, P.K., 2008. Patterns and development of floral asymmetry in
Senna (Leguminosae, Cassinae). Am. J. Bot. 95, 22–40.
Martı
´n-Trillo, M. Cubas, P., 2009. TCP genes: a family snapshot ten years later.
Trends Plant Sci. 15, 31–39.
Mitchell, C.H., Diggle, P.K., 2005. The evolution of unisexual flowers: morphologi-
cal and functional convergence results from diverse developmental transi-
tions. Am. J. Bot. 15, 1068–1076.
Mohl, H., 1837. U
¨ ber die Symmetrie der Pflanzen. Flora 20, 385–431.
Mo
¨ller, A.P., 1995. Bumblebee preference for symmetrical flowers. Proc. Natl. Acad.
Sci. U.S.A. 92, 2288–2292.
Mo
¨ller, A.P., 2000. Developmental stability and pollination. Oecologia 123, 149–157.
Mo
¨ller, A.P., Eriksson, M., 1994. Patterns of fluctuating asymmetry in flowers:
implications for sexual selection in plants. J. Evol. Biol. 7, 97–113.
Mo
¨ller, A.P., Shykoff, J.A., 1999. Morphological developmental stability in plants:
patterns and causes. Int. J. Plant Sci. 160, S135–S146.
Mo
¨ller, A.P., Sorci, G., 1998. Insect preference for symmetrical artificial flowers.
Oecologia 114, 37–42.
Mondrago
´n-Palomino, M. Theissen, G., 2008. MADS about the evolution of orchid
flowers. Trends Plant Sci. 13, 51–59.
Mondrago
´n-Palomino, M. Theissen, G., 2009. Why are orchid flowers so diverse?
Reduction of evolutionary constraints by paralogues of class B floral
homeotic genes. Ann. Bot. 104, 583–594.
Moylan, E.C., Rudall, P.J., Scotl, R.W., 2004. Comparative floral anatomy of
Strobilanthinae (Acanthaceae), with particular reference to internal parti-
tioning of the flower. Plant Syst. Evol. 249(1–2), 77–98.
Neal, P.R., Dafni, A., Giurfa, M., 1998. Floral symmetry and its role in plant-
pollinator systems: terminology, distribution, and hypotheses. Annu. Rev.
Ecol. Syst. 29, 345–373.
Ojeda, I., Francisco-Ortega, J., Cronk, Q.C., 2009. Evolution of petal epidermal
micromorphology in Leguminosae and its use as a marker of petal identity.
Ann. Bot. 104, 1099–1110.
Ollerton, J., Alarcon, R., Waser, N.M., Price, M.V., Watts, S., Cranmer, L., et al., 2009. A
global test of the pollination syndrome hypothesis. Ann. Bot. 103, 1471–1480.
Ornduff, R., Dulberger, R., 1978. Floral enantiomorphy and the reproductive system
of Wachendorfia paniculata (Haemodoraceae). New Phytol. 80, 427–434.
Parkin, J., 1914. The evolution of inflorescence. J. Linn. Soc. 42, 511–563.
Perez-Rodriguez, M., Jaffe, F.W., Butelli, E., Glover, B.J., Martin, C., 2005. Devel-
opment of three different cell types is associated with the activity of a
specific MYB transcription factor in the ventral petal of Antirrhinum
majus flowers. Development 132, 359–370.
Poinar, G.O., Danforth, B.N., 2006. A fossil bee from Early Cretaceous Burmese
amber. Science 314, 614–614.
Prenner, G., Vergara-Silva, F., Rudall, P.J., 2009. The key role of morphology in
modelling inflorescence architecture. Trends Plant Sci. 14, 302–308.
Preston, J.C., Hileman, L.C., 2009. Developmental genetics of floral symmetry
evolution. Trends Plant Sci. 14, 147–154.
Preston, J.C., Kost, M.A., Hileman, L.C., 2009. Conservation and diversification of
the symmetry developmental program among close relatives of snapdragon
with divergent floral morphologies. New Phytol. 182, 751–762.
Proctor, M., Yeo, P., Lack, A., 1996. The natural history of pollination, Harper
Collins, London.
Author's personal copy
135THE EVOLUTION OF FLORAL SYMMETRY
Ramsay, N.A., Glover, B.J., 2005. MYB-bHLH-WD40 protein complex and the
evolution of cellular diversity. Trends Plant Sci. 10, 63–70.
Rapp, R.A.,Wendel, J.F., 2005. Epigenetics and plant evolution. New Phytol. 168, 81–91.
Reardon, W., Fitzpatrick, D.A., Fares, M.A., Nugent, J.M., 2009. Evolution of
flower shape in Plantago lanceolata. Plant Mol. Biol. 71, 241–250.
Ree, R.H., Citerne, H.L., Lavin, M., Cronk, Q.C., 2004. Heterogeneous selection on
LEGCYC paralogs in relation to flower morphology and the phylogeny of
Lupinus (Leguminosae). Mol. Biol. Evol. 21, 321–331.
Ren, Y., Li, H.F., Zhao, L., Endress, P.K., 2007. Floral morphogenesis in Euptelea
(Eupteleaceae, Ranunculales). Ann. Bot. 100, 185–193.
Renshaw, A., Burgin, S., 2008. Enantiomorphy in Banksia (Proteaceae): flowers and
fruits. Aust. J. Bot. 56(4), 342.
Rodriguez, I., Gumbert, A., de Ibarra, N.H., Kunze, J., Giurfa, M., 2004. Symmetry
is in the eye of the “beeholder”: innate preference for bilateral symmetry in
flower-naive bumblebees. Naturwissenschaften 91, 374–377.
Ronse De Craene, L.P., 2003. The evolutionary significance of homeosis in flowers, a
morphological perspective. Int. J. Plant Sci. 164, S225–S235.
Ronse De Craene, L.P., 2010. Floral Diagrams—An Aid to Understanding Flower
Morphology and Evolution, Cambridge University Press, Cambridge.
Ronse De Craene, L.P., De Laet, J., Smets, E.F., 1998. Floral development and
anatomy of Moringa oleifera (Moringaceae): what is the evidence for a
Capparalean or Sapindalean affinity? Ann. Bot. 82, 273–284.
Ronse De Craene, L.P., Smets, E., 1994. Merosity in flowers: definition, origin, and
taxonomic significance. Plant Syst. Evol. 191, 83–104.
Ronse De Craene, L.P., Smets, E., 2001. Floral developmental evidence for the sys-
tematic relationships of Tropaeolum (Tropaeolaceae). Ann. Bot. 88, 879–892.
Ronse De Craene, L.P., Smets, E., Clinckemaillie, D., 2000. Floral ontogeny and
anatomy in Koelreuteria with special emphasis on monosymmetry and
septal cavities. Plant Syst. Evol 223, 91–107.
Ronse De Craene, L.P., Soltis, P.S., Soltis, D.E., 2003. Evolution of floral structures
in basal angiosperms. Int. J. Plant Sci. 164(5 Suppl.), S329–S363.
Ronse De Craene, L.P., Yang, T.Y.A., Schols, P., Smets, E.F., 2002. Floral anatomy
and systematics of Bretschneidera (Bretschneideraceae). Bot. J. Linn. Soc.
139, 29–45.
Rosin, F.M., Kramer, E.M., 2009. Old dogs, new tricks: regulatory evolution in
conserved genetic modules leads to novel morphologies in plants. Dev.
Biol. 332, 25–35.
Rudall, P.J., Bateman, R.M., 2002. Roles of synorganisation, zygomorphy and
heterotrophy in floral evolution: the gynostemium and labellum of
orchids and other lilioid monocots. Biol. Rev. Camb. Philos. Soc. 77,
403–441.
Rudall, P.J., Bateman, R.M., 2003. Evolutionary change in flowers and inflores-
cences, evidence from naturally occurring terata. Trends Plant Sci. 8, 76–82.
Rudall, P.J., Bateman, R.M., 2004. Evolution of zygomorphy in monocot flowers,
iterative patterns and developmental constraints. New Phytol. 162, 25–44.
Rudall, P.J., Bateman, R.M., 2010. Defining the limits of flowers: the challenge of
distinguishing between the evolutionary products of simple versus com-
pound strobili. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365, 397–409.
Rudall, P.J., Bateman, R.M., Fay, M.F., Eastman, A., 2002. Floral anatomy and
systematics of Alliaceae with particular reference to Gilliesia, a presumed
insect mimic with strongly zygomorphic flowers. Am. J. Bot. 89, 1867–1883.
Sargent, R.D., 2004. Floral symmetry affects speciation rates in angiosperms. Proc.
R. Soc. Lond., B, Biol. Sci. 271, 603–608.
Author's personal copy
136 H. CITERNE ET AL.
Schmidt, R.J., Ambrose, B.A., 1998. The blooming of grass flower development.
Curr. Opin. Plant Biol. 1, 60–67.
Schumann, K., 1900. Musaceae. In: Das Pflanzenreich (Egler, H.G.A. (Ed.)), Engel-
mann, Leipzig, pp. 1–45.
Sehr, E.M., Weber, A., 2009. Floral ontogeny of Oleaceae and its systematic implica-
tions. Int. J. Plant Sci. 170, 845–859.
Smith, J.F., Funke, M.M., Woo, F.V., 2006. A duplication of gcyc predates diver-
gence within tribe Coronanthereae (Gesneriaceae): phylogenetic analysis
and evolution. Plant Syst. Evol. 261, 245–256.
Smith, J.F., Hileman, L.C., Powell, M.P., Baum, D.A., 2004. Evolution of GCYC, a 
Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae (Gesneria-
ceae). Mol. Phylogenet. Evol. 31, 765–779.
Song, C.F., Lin, Q.B., Liang, R.H., Wang, Y.Z., 2009. Expressions of ECE-CYC2
clade genes relating to abortion of both dorsal and ventral stamens in
Opithandra (Gesneriaceae). BMC Evol. Biol. 9, 244.
Sprengel, C.K., 1793. Das entdeckte Geheimniss der Natur im Bau und in der
Befruchtung der Blumen, Frederich Vieweg, Berlin.
Sun, G., Ji, Q., Dilcher, D.L., Zheng, S., Nixon, K.C., Wang, X., 2002. Archaefruc-
taceae, a new basal angiosperm family. Science 296, 899–904.
The Angiosperm Phylogeny Group classification for the orders and families of
flowering plants: APG III. Bot. J. Linn. Soc.161,105–121
Theissen, G., 2000. Evolutionary developmental genetics of floral symmetry: the
revealing power of Linnaeus’ monstrous flower. Bioessays 22, 209–213.
Theissen, G., 2006. The proper place of hopeful monsters in evolutionary biology.
Theory Biosci. 124, 349–369.
Thorp, R.W., 2000. The collection of pollen by bees. Plant Syst. Evol. 222, 211–223.
Tripp, E.A., Manos, P.S., 2008. Is floral specialization an evolutionary dead-end? Polli-
nation system transitions in Ruellia (Acanthaceae). Evolution 62, 1712–1736.
Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H., Chen, H.H., 2004. Four DEF-
like MADS box genes displayed distinct floral morphogenetic roles in
Phalaenopsis orchid. Plant Cell Physiol. 45, 831–844.
Tsou, C.-H., Mori, S.A., 2007. Floral organogenesis and floral evolution of the
Lecythidioideae. Am. J. Bot. 94, 716–736.
Tucker, S.C., 1996. Trends in evolution of floral ontogeny in Cassia sensu stricto,
Senna, and Chamaecrista (Leguminosae, Caesalpinioideae, Cassieae, Cas-
siinae): a study in convergence. Am. J. Bot. 83, 687–711.
Tucker, S.C., 1999. Evolutionary lability of symmetry in early floral development.
Int. J. Plant Sci. 160, S25–S39.
Tucker, S.C., 2002. Floral ontogeny in Sophoreae (Leguminosae: Papilionoideae).
III. Radial symmetry and random petal aestivation in Cadia purpurea. Am.
J. Bot. 89, 748–757.
Tucker, S.C., 2003a. Comparative floral ontogeny in Detarieae (Leguminosae: Cae-
salpinioideae). III. Adaxially initiated whorls in Julbernadia and Sindora.
Int. J. Plant Sci. 164, 275–286.
Tucker, S.C., 2003b. Floral ontogeny in Swartzia (Leguminosae: Papilionoideae: Swart-
zieae): distribution and role of the ring meristem. Am. J. Bot. 90, 1271–1292.
Tucker, S.C., Hodges, S.A., 2005. Floral ontogeny of Aquilegia, Semiaquilegia and
Enemion (Ranunculaceae). Int. J. Plant Sci. 166, 557–574.
Ushimaru, A., Dohzono, I., Takami, Y., Hyodo, F., 2009. Flower orientation enhances
pollen transfer in bilaterally symmetrical flowers. Oecologia 160, 667–674.
Ushimaru, A., Hyodo, F., 2005. Why do bilaterally symmetrical flowers orient
vertically? Flower orientation influences pollinator landing behaviour.
Evol. Ecol. Res. 7, 151–160.
Author's personal copy
137THE EVOLUTION OF FLORAL SYMMETRY
van Kleunen, M., Meier, A., Saxenhofer, M., Fischer, M., 2008. Support for the
predictions of the pollinator-mediated stabilizing selection hypothesis. J.
Plant Ecol. 1, 173–178.
Vincent, C.A., Coen, E.S., 2004. A temporal and morphological framework for
flower development in Antirrhinum majus. Can. J. Bot. 82, 681–690.
Wang, H.C., Meng, A.P., Li, J.Q., Feng, M., Chen, Z.D., Wang, W., 2006. Floral
organogenesis of Cocculus orbiculatus and Stephania dielsiana (Menisper-
maceae). Int. J. Plant Sci. 167, 951–960.
Wang, Z., Luo, Y., Li, X., Wang, L., Xu, S., Yang, J., et al., 2008. Genetic control of
floral zygomorphy in pea (Pisum sativum L.). Proc. Natl. Acad. Sci. U.S.A.
105, 10414–10419.
Wanntorp, L., Ronse De Craene, L.P., 2007. Flower development of Meliosma
(Sabiaceae): evidence for multiple origins of pentamery in the eudicots.
Am. J. Bot. 94, 1828–1836.
Waser, N.M., 1998. Pollination, angiosperm speciation, and the nature of species
boundaries. Oikos 82, 198–201.
Weeks, E.L., Frey, F.M., 2007. Seed production and insect visitation rates in Hesperis
matronalis are not affected by floral symmetry. Int. J. Plant Sci. 168, 611–617.
Westerkamp, C., Classen-Bockhoff, R., 2007. Bilabiate flowers: the ultimate response
to bees? Ann. Bot. 100, 361–374.
Whitfield, J.B., Kjer, K.M., 2008. Ancient rapid radiations of insects: challenge for
phylogenetic analysis. Annu. Rev. Entomol. 53, 449–472.
Wignall, A.E., Heiling, A.M., Cheng, K., Herberstein, M.E., 2006. Flower symmetry
preferences in honeybees and their crab spider predators. Ethology 112,
510–518.
Wilson, A.C., Carlson, S.S., White, T.J., 1977. Biochemical evolution. Annu. Rev.
Biochem. 46, 573–639.
Winkler, H., 1930. Musaceae. In: Die natu
¨rlichen Pflanzenfamilien (Engler, A. (Ed.)),
Engelmann, Leipzig, pp. 505–541.
Wolfe, L.M., Krstolic, J.L., 1999. Floral symmetry and its influence on variance in
flower size. Am. Nat. 154, 484–488.
Wood, T.E., Burke, J.M., Rieseberg, L.H., 2005. Parallel genotypic adaptation: when
evolution repeats itself. Genetica 123, 157–170.
Wydler, H., 1844. Einige Bemerkungen u
¨ber die Symmetrie der Blumenkrone. Bota-
nische Zeitung 2, 609–611.
Yuan, Z., Gao, S., Xue, D.W., Luo, D., Li, L.T., Ding, S.Y., et al., 2009.
RETARDED PALEA1 controls palea development and floral zygomorphy
in rice. Plant Physiol. 149, 235–244.
Zhang, W., Kramer, E.M., Davis, C.C., 2010. Floral symmetry genes and the origin
and maintenance of zygomorphy in a plant-pollinator mutualism. Proc.
Natl. Acad. Sci. U.S.A. 107, 6388–6393.
Zhou, X.R., Wang, Y.Z., Smith, J.F., Chen, R., 2008. Altered expression patterns of
TCP and MYB genes relating to the floral developmental transition from
initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phy-
tol. 178, 532–543.
... For example, both bees and flies prefer wild radish (Raphanus raphanistrum) flowers with larger sizes [50]. Plant-pollinator interactions are closely related to the evolution of flower symmetry [51,52]. Generally, flower symmetry has two main types: radial symmetry (representing an ancestral state) and bilateral symmetry (representing a derived state) [51,53]. ...
... Plant-pollinator interactions are closely related to the evolution of flower symmetry [51,52]. Generally, flower symmetry has two main types: radial symmetry (representing an ancestral state) and bilateral symmetry (representing a derived state) [51,53]. Compared to radially symmetrical flowers, bilaterally symmetrical flowers typically rely more on specialized pollination and exhibit larger sizes, more showy shapes, and restricted nectaries to help attract more selective species of pollinators [54]. ...
Article
Full-text available
The size of floral organs is closely related to the successful reproduction of plants, and corolla size is, to some extent, indicative of the size of floral organs. Petals are considered homologous to leaves, so we also attempted to estimate the area of a single petal using a method (i.e., the Montgomery equation) that is typically employed for estimating single leaf area. Additionally, we estimated the total petal area per flower (AT; i.e., the whole corolla area) using a method (i.e., the Montgomery–Koyama–Smith equation) designed for estimating the total leaf area per shoot. The Montgomery equation (ME) estimates the leaf area by assuming that the leaf area is proportional to the product of leaf length and width. The Montgomery–Koyama–Smith equation (MKSE) assumes that the total leaf area per shoot is proportional to the product of the sum of individual leaf widths and the maximum individual leaf length. To test the validity of the ME for predicting petal area, a total of 1005 petals from 123 flowers of two Rosaceae species, which exhibit a certain variation in petal shape, were used to fit the relationship between the petal area (A) and the product of petal length (L) and width (W). Two equations, including the MKSE and a power-law equation (PLE), were used to describe the relationship between the total petal area per flower and the product of the sum of individual petal widths and the maximum individual petal length. The RMSE and the Akaike information criterion (AIC) were used to measure the goodness of fit and the structural complexity of each equation. The results show that the ME has a low RMSE value and a high correlation coefficient when fitting the relationship between A and LW for either of the two species. Additionally, the MKSE and the PLE exhibit low RMSEs and AICs for estimating the AT of both Rosaceae species. These results indicate that the ME, MKSE, and PLE are effective in predicting petal area and corolla area, respectively. The use of these models will significantly reduce the time, labor, and financial costs of future petal area and corolla area measurements.
... bleeding hearts), and, ultimately, to zygomorphic (bilaterally symmetric; e.g., Fumaria L. and Rupicapnos Pomel fumitories) flowers (Figure 1; Hidalgo and Gleissberg, 2010;Sauquet et al., 2015). Disymmetry (not to be confused with dissymmetry, which means without symmetry) is rare in angiosperms (Citerne et al., 2010) and seen in Papaveraceae as an intermediate state between actinomorphy and zygomorphy (Damerval and Nadot, 2007;Sauquet et al., 2015). Additionally, molecular tools for functional validation have been developed for both actinomorphic and zygomorphic representatives, thus enabling comparative studies (Hidalgo et al., 2012;Zhao et al., 2018) and further establishing Papaveraceae as a model system for the study of floral evolution. ...
... The rise in these insect orders in the Palaeozoic and Triassic (Asar et al., 2022) predated that of Papaveraceae; in fact, almost all Hymenoptera in these interactions are Anthophila (bees), a group that emerged in the Cretaceous (Asar et al., 2022). Our dating results are consistent with the view that Papaveraceae have codiversified with bees and that these pollinators have likely played a major role in the increased specialization of floral phenotypes in the family, as has been suggested more generally for angiosperms (Citerne et al., 2010;Cardinal and Danforth, 2013). ...
Article
Full-text available
Reconstructing evolutionary trajectories and transitions that have shaped floral diversity relies heavily on the phylogenetic framework on which traits are modelled. In this study, we focus on the angiosperm order Ranunculales, sister to all other eudicots, to unravel higher-level relationships, especially those tied to evolutionary transitions in flower symmetry within the family Papaveraceae. This family presents an astonishing array of floral diversity, with actinomorphic, disymmetric (two perpendicular symmetry axes), and zygomorphic flowers. We generated nuclear and plastid datasets using the Angiosperms353 universal probe set for target capture sequencing (of 353 single-copy nuclear ortholog genes), together with publicly available transcriptome and plastome data mined from open-access online repositories. We relied on the fossil record of the order Ranunculales to date our phylogenies and to establish a timeline of events. Our phylogenomic workflow shows that nuclear-plastid incongruence accompanies topological uncertainties in Ranunculales. A cocktail of incomplete lineage sorting, post-hybridization introgression, and extinction following rapid speciation most likely explain the observed knots in the topology. These knots coincide with major floral symmetry transitions and thus obscure the order of evolutionary events.
... Surprisingly, the corolla symmetry and constriction of floral tube in Didymocarpoideae exhibited no significant phylogenetic signals, suggesting that pollinators may influence the evolution of these two traits. Corolla symmetry is a key characteristic of pollination syndromes and plays a crucial role in plant-pollinator interactions (Citerne et al., 2010;Culbert & Forrest, 2016). The evolutionary transition from actinomorphy to zygomorphy is believed to result from the strong selection pressures exerted by specialized pollinators (Endress, 2001;Gong & Huang, 2009;Neal et al., 1998). ...
Article
Stamen traits significantly influence pollen presentation patterns and play a critical role in mating systems, floral evolution, and the diversification of angiosperms. Anthers within a flower can either develop freely or be united, resulting in three primary modes: separated anthers, synandry, and paired-united anthers. The impact of these anther modes on species diversification remains inadequately understood. In this study, we employed 14 plastid and nuclear ribosomal markers from 789 species to reconstruct the phylogenetic relationships of the Old World Didymocarpoideae, which are predominantly bee pollinated. We then investigated the evolutionary patterns of anther modes and assessed their potential role in species diversification. Our findings indicate that the evolution of anther modes and associated floral traits exhibited significant trait conservatism. Paired-united anthers likely represent the ancestral form of Didymocarpoideae, characterized by four fertile stamens with exserted locations for the anthers. Notably, derived synandry was associated with relatively high rates of species diversification, particularly in the species-rich Cyrtandra, Primulina, and Streptocarpus, which could be due to enhanced pollination precision facilitated by aggregations of anthers and pollen grains. This study elucidates the evolutionary transitions of different anther modes while highlighting their influence on diversification rates within Didymocarpoideae.
... Regarding the suggested symmetry of electrical fields relative to floral morphology and pattern detection, it is well known that floral symmetry is a significant factor within pollinator decision making [60,61,62]. From visual cues of symmetry, a pollinator is able to assess the health of a flower, the abundance of available resource (nectar or pollen), and the possible presence of a predator [50,51]. ...
Preprint
Relationships between plants and insects vitally underpin the health of global ecosystems and food production. Through co-evolution, insects have acquired a variety of senses in response to the emergence of floral cues such as scent, colour and shape. Therefore, the recent discovery of electroreception among terrestrial arthropods motivates the investigation of floral electrics as part of their wider sensory ecology. We examine how a flower's morphology and material properties produce and propagate detectable, ecologically relevant electrical signals in several biologically inspired scenarios. As the electrical field both interior and exterior to the flower must be solved for, we develop an extension of the two-dimensional AAA-least squares algorithm for solving such two-domain electrostatics problems. It is found that the electrical signals produced by the plant can reveal information to the insect about the flower shape, available pollen and the presence of other nearby arthropods. These results show good qualitative agreement with an equivalent three-dimensional scenario, computed using finite element methods. The extension of the AAA-least squares algorithm to two-domain problems provides a fast and accurate method for modelling electrostatic problems, with possible further application in fluid dynamics and magnetostatics. Biologically, our results highlight the significant role floral electrics may play in plant-pollinator and predator-prey relationships, unveiling previously unstudied facets of these key relationships.
... The Delphinieae tribe, to which Delphinium belongs, is comprised of approximately 650-750 species, representing~25% of the Ranunculaceae family (Figure 1, Jabbour and Renner, 2012b;Novikoff and Jabbour, 2014;Espinosa et al., 2017). Zygomorphy has evolved several times in angiosperms but only once in Ranunculaceae, in the ancestors of the tribe Delphinieae (Jabbour et al., 2009a;Citerne et al., 2010;Jabbour and Renner, 2012b;reviewed by Hileman, 2014a;Reyes et al., 2016). The arrangement of perianth organs in Delphinium zygomorphic flowers represents a fascinating example of morphological diversification this makes the genus popular for horticultural purposes (Figures 2A-C, Jabbour et al., 2009b). ...
Article
Full-text available
The complex zygomorphic flowers of the early-diverging eudicot Delphinium provide an opportunity to explore intriguing evolutionary, developmental, and genetic questions. The dorsal perianth organs, consisting of a spurred sepal and the nectar-bearing spurred petal(s) in Delphinium, contribute to the dorso-ventralization and zygomorphic flower morphology. The seamless integration of the two or three dorsal petaloid spurred organs is considered a synorganization, and the resulting organ complex is referred to as a hyperorgan. The hyperorgan shows variability within the tribe due to variation in the number, size, and shape of the spurs. Research in recent decades within this tribe has enhanced our understanding of morphological evolution of flowers. More recently, functional studies using the RNAi approach of Virus-Induced Gene Silencing (VIGS) have unraveled interesting results highlighting the role of gene duplication in the functional diversification of organ identity and symmetry genes. Research in this early-diverging eudicot genus bridges the gaps in understanding the morphological innovations that are mostly studied in model grass and core eudicot clades. This first comprehensive review synthesizes eco-evo-devo research on Delphinium, developing a holistic understanding of recent advancements and establishing the genus as an exceptional model for addressing fundamental questions in developmental genetics, particularly in the evolution of complex flowers. This progress highlights Delphinium’s significant potential for future studies in this field.
... The types of variations include abortion of organs, radial versus bilateral symmetry, whorled or spiral phyllotaxis, dramatic variations in the colour, arrangement, number or size of floral organs, or even evolution of extra floral organs (Becker et al., 2011, Khanduri et al., 2019a.The diversity in angiosperms is partially due to the evolution of a great variety of floral phenotypes, which enhanced the pollination success in plants. A pollinator's ability to detect a flower depends on many factors, especially those connected with a floral display, associated with flower numbers and features, type and height of inflorescences (Firmage and Cole, 1988;Huda and Wilcock, 2008), flower structure and colour (Trunschke et al., 2017), presence or absence of pigment patterns (Hansen et al., 2012), shape and size of the flower, and size of pigment patterns (Medel et al., 2003;Khanduri, 2022), symmetry of the flower including orientation (Citerne et al., 2010;Khanduri et al., 2021), amount of pollen and nectar as a floral reward (Alm et al., 1990;Perret et al., 2001;Kromer et al., 2008, Khanduri, 20222023), among many other floral traits. Apart from offering nutritional rewards and using visual stimuli, flowers emit volatile organic compounds (VOCs) to attract pollinators and stimulate reproductive outcrossing. ...
Article
Full-text available
Species within the primitive genus Magnolia may often produce specialized floral traits and behaviour to grab the attention of potential pollinators from their surroundings. These reproductive traits in plants undergo various selection pressures and frequently bring forth variations to adapt to the new habitat that may result in speciation. We have aimed to understand the floral traits, the functional role of floral parts, and the variable response of visitors in Magnolia grandiflora belonging to an ancient order Magnoliales. Our observations reveal that the floral traits of M. grandiflora resemble those of basal angiosperms, conforming to the primitive existence of the genus Magnolia . The inconsistency in floral form reflected that M. grandiflora has been experiencing various selection pressures from biotic and abiotic factors. Inconsistency in floral equations and diagrams reflect the structural variability in flowers, which can directly impact pollination and reproductive output. SEM images of pollen grains reveal that the pollen grains were monocolpate and boat-shaped in structure. GC-MS analysis showed that VOCs in stigmatic exudation of the flower were largely composed of terpene hydrocarbons such as Perthenine, β-Elemene, β-Caryophyllene, α-Humulene, Bicyclogermacrene, Germacrene A and D, etc. Beyond pollinators attraction, VOCs play a major role in repelling unwanted visitors and in improving the defensive mechanisms in Magnolia . Beetles, bees, and flies were found to be the active pollinators and the behaviour of bees indicates that bees were trying to replace the role of beetles in pollinating M. grandiflora . In summary, floral whorls were diversely functionalized to ensure maximum reproduction in M. grandiflora .
... Optimal floral longevities balance flowering costs against the rate of pollen export and receipt [4,5]. Floral symmetry, whether flowers are bilaterally (zygomorphy) or radially (actinomorphy) symmetrical, has long been considered a key trait in floral evolution, potentially driving angiosperm speciation [6][7][8][9]. Zygomorphic flowers are considered more specialized with fewer floral visitors on average [10,11], but potentially more accurate cross-pollination [12,13]. ...
Article
Full-text available
Floral longevity, the length of time a flower remains open and functional, is a phylogenetically conserved trait that balances floral costs against the rate at which flowers are pollinated. Floral symmetry has long been considered a key trait in floral evolution. Although zygomorphic (bilaterally symmetric) flowers typically receive fewer floral visitors than actinomorphic (radially symmetric) flowers, it is yet to be determined whether this could be associated with longer floral longevity. Using newly collected field data combined with data from the literature on 1452 species in 168 families, we assess whether floral longevity covaries with floral symmetry in a phylogenetic framework. We find that zygomorphic flowers last on average 1.1 days longer than actinomorphic flowers, a 26.5% increase in longevity, with considerable variation across both groups. Our results provide a basis to discuss the ecological and evolutionary costs of zygomorphy for plants. Despite these costs, zygomorphy has evolved numerous times throughout angiosperm history, and we discuss which rewards may outweigh the costs of slower pollination in zygomorphic flowers.
Article
Full-text available
Senegalia was recently described as non-monophyletic; however, its sections exhibit robust monophyletic support, suggesting a potential reclassification into separate genera-Senegalia sect. Monocanthea p.p. is the largest section. It contains 164 species of pantropical distribution and includes all of the current 99 neotropical species of Senegalia; however, no morphological characteristics are available to differentiate this section. To characterize this section, we examined floral developmental traits in four species of Senegalia sect. Monocanthea p.p. These traits were previously considered as potentially distinguishing features within Acacia s.l. and include the onset patterns of the androecium, the timing of calyx union, the origin of the staminal disc, and the presence of stomata on the petals. Furthermore, we analyzed previously unexplored traits, such as corolla union types, inflorescence development, and micromorphological features related to the indumentum, as well as the presence and location of stomata. The characteristics proposed as potential synapomorphies of the group include the postgenital fusion of the corolla and the presence of a staminal disc formed at the base of the filaments. The other analyzed floral characteristics were not informative for the characterization of the group. Future studies of floral ontogeny will help to establish more precise patterns, mainly whether corolla union and staminal tube formation occur similarly in African and Asian sections of Senegalia.
Article
Full-text available
Since the insights by Charles Darwin, heterostyly, a floral polymorphism with morphs bearing stigmas and anthers at reciprocal heights, has become a model system for the study of natural selection. Based on his archetypal heterostylous flower, including regular symmetry, few stamens and a tube, Darwin hypothesised that heterostyly evolved to promote outcrossing through efficient pollen transfer between morphs involving different areas of a pollinator’s body, thus proposing his seminal pollination-precision hypothesis. Here we update the number of heterostylous and other style-length polymorphic taxa to 247 genera belonging to 34 families, notably expanding known cases by 20%. Using phylogenetic and comparative analyses across the angiosperms, we show numerous independent origins of style-length polymorphism associated with actinomorphic, tubular flowers with a low number of sex organs, stamens fused to the corolla, and pollination by long-tongued insects. These associations provide support for the Darwinian pollination-precision hypothesis as a basis for convergent evolution of heterostyly across angiosperms.
Article
Full-text available
Floral morphology remains the cornerstone for plant identification and studies of plant evolution. This guide gives a global overview of the floral diversity of the angiosperms through the use of detailed floral diagrams. These schematic diagrams replace long descriptions or complicated drawings as a tool for understanding floral structure and evolution. They show important features of flowers, such as the relative positions of the different organs, their fusion, symmetry, andstructural details. The relevance of the diagrams is discussed, and pertinent evolutionary trendsare illustrated. The range of plant species represented reflects the most recent classification of flowering plants based mainly on molecular data, which is expected to remain stable in the future.This book is invaluable for researchers and students working on plant structure, development and systematics, as well as being an important resource for plant ecologists, evolutionary botanists and horticulturists
Article
Full-text available
Wachendorfia Burm. is a small genus endemic to the Cape Floral Region. Pour species are recognised in this study. Two species were originally described by Burman in 1757 and these were followed by numerous other descriptions of what is essentially one very variable species (W. paniculaia Burm.). This variation is discussed and reasons are given as to why the recognition of formal infraspecific taxa is inappropriate. Formal taxonomic descriptions, distribution maps and a key to the species are provided. Rhizome morphology, leaf anatomy and pollen and seed coat structures were investigated and illustrations are provided. A cladogram was inferred and this is consistent with an ecological speciation model for the genus. The two species with the most restricted distribution (W. brachyandra W.F. Barker and W. pamfiora W.F. Barker) are considered to be the most recently evolved. Features of systematic and ecological interest (e.g. floral enantiomorphy) are discussed.
Article
Floral ontogeny is described and compared in five species and four genera of the hypothetically basal proteaceous subfamily Persoonioideae sensu Johnson and Briggs. The hypotheses surrounding the origin of the peculiar proteaceous flower and homologous structures within the flowers are examined using ontogenetic morphological techniques. Ontogenetic evidence reveals that the proteaceous flower is simple, composed of four tepals, each tepal initiated successively with the lateral tepals being initiated first and second followed by the successive initiation of the sagittal tepals. Each of four stamens is initiated opposite a tepal in a similar sequence to tepal initiation. A single carpel develops terminally from the remaining floral meristem. In taxa of Persoonieae, nectaries are initiated from a broadened receptacle in alternistamenous sites after zonal growth beneath and between the tepals and stamens has begun. The nectaries are interpreted as secondary organs, not reduced homologues of a “lost” petal or stamen series. Developmental variation is present among the examined taxa in several forms including the development of a Vorlaüferspitze (spine) on the upper portion of the tepals, adnation between the anthers and tepals, and formation of the carpel. In Placospermum the early formation of the carpel cleft extends to the floral receptacle and in the other taxa, the carpel cleft is distinctly above the receptacle. Different developmental pathways result in similar mature morphologies of the carpel in Persoonia falcata and Placospermum coriaceum. Bellendena montana is unique relative to the other taxa in having free stamens, a punctate stigma, reduced (not lost) floral bracts, and the floral and bract primordia are initiated from a common meristem. This study provides a foundation for future studies of the developmental basis of floral diversity within Proteaceae.
Chapter
A literature review of 34 families of flowering plants containing at least one species pollinated primarily by beetles is presented. While the majority of species are represented by magnoliids and basal monocotyledons specialized, beetle-pollinated systems have evolved independently in 14 families of eudicotyldons and six families of petaloid monocots. Four, overlapping modes of floral presentation in plants pollinated exclusively by beetles (Bilabiate, Brush, Chamber Blossom and Painted Bowl) are described. Chamber Blossoms and Painted Bowls are the two most common modes. Chamber Blossoms, found in magnoliids, primitive monocotyledons and in some families of woody eudicots, exploit the greatest diversity of beetle pollinators. Painted Bowls are restricted to petaloid monocots and a few families of eudicots dependent primarily on hairy species of Scarabaeidae as pollen vectors. In contrast, generalist flowers pollinated by a combination of beetles and other animals are recorded in 22 families. Generalist systems are more likely to secrete nectar and exploit four beetle families absent in specialist flowers. Centers of diversity for species with specialized, beetle-pollinated systems are distributed through the wet tropics (centers for Brush and Chamber Blossoms) to warm temperate-Mediterranean zones (centers for Painted Bowls and a few Bilabiate flowers). It is unlikely that beetles were the first pollinators of angiosperms but specialized, beetle-pollinated flowers must have evolved by the midlate Cretaceous to join pre-existing guilds of beetle-pollinated gymnosperms. The floras of Australia and western North America suggest that mutualistic interactions between beetles and flowers has been a continuous and labile trend in angiosperms with novel interactions evolving through the Tertiary.
Article
Despite much recent research on pollination, we have amassed relatively little hard information about how animal pollinators contribute to angiosperm speciation and species distinctiveness. We usually assume that pollinators make important contributions by specializing on plant species and providing differences upon which plants specialize. But evidence for generalization in many plant-pollinator interactions calls this assumption into question. Generalization makes strong 'floral isolation' unlikely during and after the speciation process, and is seen by some workers as problematical for a scenario of pollinator-mediated disruptive selection leading to species formation. The time is ripe to initiate several lines of further research. It will be valuable to characterize selection on plants more carefully at various spatial scales to understand whether different suites of pollinators can affect consistent selection in different directions on floral characteristics. Similarly, it will be valuable to explore how reproductive isolation arises within and among populations, races, and higher taxa of plants. Even if they are not strong agents of floral isolation, pollinators may contribute to the evolution of reproductive isolation in other ways, which largely remain to be discovered. One possibility is that reproductive isolation evolves more or less independently of diversification in reproductive characteristics. If so, floral adaptation may not be tightly coupled with the formation of biological species in angiosperms, as is often supposed.