ArticlePDF Available

The Evolution of Floral Symmetry

Authors:

Abstract and Figures

Symmetry is a defining feature of floral diversity. Here we review the evolutionary and ecological context of floral symmetry (adding new data regarding its distribution), as well as the underlying developmental and molecular bases. Two main types of symmetry are recognized: radial symmetry or actinomorphy and bilateral symmetry or zygomorphy. The fossil record suggests that zygomorphy evolved in various lineages ∼50 MY (million years) after the emergence of angiosperms, coinciding with the diversification of specialized insect pollinators. Among extant angiosperms, zygomorphy is a highly homoplastic trait, and is associated with species radiation thereby satisfying the definition of key innovation. The evolution of symmetry may be influenced by clade-specific floral and inflorescence characteristics, possibly indicating different underlying constraints. Ecological studies suggest that zygomorphy may promote cross-fertilization through increased precision in pollen placement on the pollinator’s body. The molecular bases of flower symmetry are beginning to be unravelled in core eudicots, and available evidence underlines the repeated recruitment of CYC2 genes, associated with frequent gene duplications. Future prospects are discussed, emphasizing symmetry as a model character for understanding the evolutionary bases of homoplastic floral traits.
Content may be subject to copyright.
!
!
!
!
!
!"#$%&"'()*+%,'$%-+#.#/'001%(230#$"*4%#/%)"*%3--5%!"#$%&'()*%)+,-$%*&$.)/'('$0&1)
23,.45')6789)!"*%&-(1%'))'&"*4%#$%(+-6#4*4%31%70$*6#*+%8-+%)"*%'2)"-+9$%3*/*8#)%'/4%8-+%)"*%3*/*8#)%%
-8%)"*%'2)"-+9$%#/$)#)2)#-/:%8-+%/-/;&-<<*+&#'0%+*$*'+&":%'/4%*42&')#-/'0%2$*=%!"#$%#/&024*$%,#)"-2)%
0#<#)')#-/%2$*%#/%#/$)+2&)#-/%')%1-2+%#/$)#)2)#-/:%4#$)+#32)#-/%)-%$(*&#8#&%&-00*'.2*$:%'/4%(+-6#4#/.%'%
&-(1%)-%1-2+%#/$)#)2)#-/9$%'4<#/#$)+')-+=%
!
!
!
>00%-)"*+%2$*$:%+*(+-42&)#-/%'/4%4#$)+#32)#-/:%#/&024#/.%,#)"-2)%0#<#)')#-/%&-<<*+&#'0%+*(+#/)$:%$*00#/.%
-+%0#&*/$#/.%&-(#*$%-+%'&&*$$:%-+%(-$)#/.%-/%-(*/%#/)*+/*)%$#)*$:%1-2+%(*+$-/'0%-+%#/$)#)2)#-/9$%,*3$#)*%-+%
+*(-$#)-+1:%'+*%(+-"#3#)*4=%?-+%*@&*()#-/$:%(*+<#$$#-/%<'1%3*%$-2.")%8-+%$2&"%2$*%)"+-2."%70$*6#*+A$%
(*+<#$$#-/$%$#)*%')B%
"))(BCC,,,=*0$*6#*+=&-<C0-&')*C(*+<#$$#-/2$*<')*+#'0%
%
?+-<%D')"*+#/*%E'<*+6'0:%FG0H/*%D#)*+/*:%?0-+#'/%I'33-2+%'/4%J-("#*%K'4-):%
!"*%76-02)#-/%-8%?0-+'0%J1<<*)+1=%
L/B%I*'/;D0'24*%M'4*+%'/4%N#&"*0%E*0$*/1:%*4#)-+$:%%
>46'/&*$%#/%O-)'/#&'0%P*$*'+&"%QR-02<*%STU=%
>&'4*<#&%V+*$$:%WXYX:%(=%ZS=%
LJOKB%[\Z;X;YW;]ZXZ\X;\%
^%D-(1+#.")%WXYX:%70$*6#*+%_)4=%
>&'4*<#&%V+*$$=%
!"#$%&'&()#"(*#*+,#--'",%./("'0'.",1(.*&('&2,.3%#*./(20'(#*/45((
6#3()#"("'7"#&2,3%#*8(&%03"%923%#*(#"(,#--'",%./(20'5(
Author's personal copy
The Evolution of Floral Symmetry
* †,‡
HE
´ LE
` NE CITERNE, FLORIAN JABBOUR, SOPHIE NADOT
†
AND CATHERINE DAMERVAL
*,1
*
UMR de Ge
´ne
´tique Ve
´ge
´tale, CNRS—Univ Paris-Sud—INRA—
AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
Universite
´ Paris-Sud, Laboratoire Ecologie, Syste
´matique, Evolution,
CNRS UMR 8079-AgroParisTech, Orsay, F-91405, France
Institute for Systematic Botany and Mycology, University of Munich,
Menzinger Strasse 67, 80638 Munich, Germany
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86
II. Definitions of Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
III. Symmetry and Flower Development. . . . . . . . . . . . . . . . . . . . . . . . .  93
A. Establishment of Symmetry at Various Stages During
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
B. Impact of Growth and Organ Elaboration on Floral symmetry . 94
C. Developmental Trajectories and Flower Symmetry . . . . . . . . . .  95
IV. Evolution of Flower Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
A. Distribution of Symmetry among Extant Angiosperms . . . . . . .  97
B. Emergence of Zygomorphy during Angiosperm Evolution in
Relation to Insect Diversification . . . . . . . . . . . . . . . . . . . . . . .  98
C. Architecture of Flowers and Inflorescences—What is Their
Impact on Floral Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
V. The Significance of Symmetry in Plant–Pollinator Interactions . . . . .  108
A. Zygomorphy and Outcrossing Strategies . . . . . . . . . . . . . . . . . .  109
All authors contributed equally to this review
1
Corresponding author: E-mail: catherine.damerval@moulon.inra.fr
Advances in Botanical Research, Vol. 54 0065-2296/10 $35.00
Copyright 2010, Elsevier Ltd. All rights reserved. DOI: 10.1016/S0065-2296(10)54003-5
Author's personal copy
86 H. CITERNE ET AL.
B. Pollinator Preferences and their Perception of Symmetry . . . . . .  112
C. Floral Symmetry and Pollination Syndromes . . . . . . . . . . . . . . .  112
D. Variability of Floral Traits in Zygomorphic and Actinomorphic
Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
VI. Molecular Bases of Flower Symmetry. . . . . . . . . . . . . . . . . . . . . . . .  115
A. The Floral Symmetry Gene Regulatory Network in
Antirrhinum Majus .................................. 115
B. CYC-like Genes are Implicated in the Control of Zygomorphy
in Diverse Lineages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
C. Genetic Mechanisms Underlying Changes in Floral Symmetry . . 121
D. Evolution of CYC-like Genes: Functional Implications . . . . . . .  122
E. Beyond CYC: Conservation and Divergence of Other
Components of the Floral Symmetry Network . . . . . . . . . . . . .  124
VII. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
ABSTRACT
Symmetry is a defining feature of floral diversity. Here we review the evolutionary and
ecological context of floral symmetry (adding new data regarding its distribution), as
well as the underlying developmental and molecular bases. Two main types of symmetry
are recognized: radial symmetry or actinomorphy and bilateral symmetry or zygomor-
phy. The fossil record suggests that zygomorphy evolved in various lineages !50 MY
(million years) after the emergence of angiosperms, coinciding with the diversification of
specialized insect pollinators. Among extant angiosperms, zygomorphy is a highly
homoplastic trait, and is associated with species radiation thereby satisfying the defini-
tion of key innovation. The evolution of symmetry may be influenced by clade-specific
floral and inflorescence characteristics, possibly indicating different underlying con-
straints. Ecological studies suggest that zygomorphy may promote cross-fertilization
through increased precision in pollen placement on the pollinator’s body. The molecular
bases of flower symmetry are beginning to be unravelled in core eudicots, and available
evidence underlines the repeated recruitment of CYC2 genes, associated with frequent
gene duplications. Future prospects are discussed, emphasizing symmetry as a model
character for understanding the evolutionary bases of homoplastic floral traits.
I. INTRODUCTION
With more than 260,000 extant species, angiosperms represent about 90% of
terrestrial plant biodiversity. The flower, which is a synapomorphy of the
group, is a fascinating structure in many respects, having a well-conserved
ground plan but tremendous diversity in the size, colour, shape and number of
its parts. As a component of human environment it participates in shaping our
feeling of beauty.
Author's personal copy
87THE EVOLUTION OF FLORAL SYMMETRY
Symmetry is one of the major features taking part in this perception.
There are two principal types of floral symmetry, radial and bilateral
(Section II), the latter having evolved several times independently in angios-
perms (Section IV). Bilateral symmetry is therefore a homoplastic trait,
which poses fascinating questions concerning the homology of underlying
developmental and genetic processes, and the evolutionary forces at work in
the different occurrences. Indeed, such recurrent innovations provide
researchers with ideal models to address the question of the relative impor-
tance of historical contingency, physical and developmental constraints and
selection, in the course of organismal evolution.
As with many other architectural traits, the type of symmetry is often an
integral part of a species’ definition, even though more or less important
deviations from the characteristic type can be observed in natural popula-
tions (Section V). The first floral symmetry mutant was described by
Linnaeus, based on an atypical sample of Linaria vulgaris harvested by
Magnus Zio
¨berg in 1742 in Roslagen (Sweden). The flower was radially
symmetric with five nectar spurs, contrasting with the normal bilaterally
symmetric Linaria flower with just a single spur. Linnaeus called it
“Peloria,” after the Greek word for monster. He proposed that it arose
through fertilization of a normal Linaria by pollen from an alien species
(Linnaeus (1744), discussed in Gustafsson, 1979). Darwin was aware of
peloric forms in a number of species, and he remarked that many Labiateae
and Scrophulariaceae species are prone to such abnormal shapes.
He supposed that pelorism was due to an arrest of development or to
reversion. He made reciprocal crosses between peloric and normal snap-
dragon, and observed that none of the offsprings exhibited peloria; he
reported that “the crossed plants, which perfectly resembled the common
snapdragon, were allowed to sow themselves, and out of a hundred and
twenty-seven seedlings, eighty-eight proved to be common snapdragons,
two were in an intermediate condition between the peloric and normal state,
and thirty-seven were perfectly peloric, having reverted to the structure of
their one grand-parent” (1868). Darwin failed to interpret this segregation
(not significantly different from a Mendelian 3:1 segregation for one domi-
nant gene) and explained the results in the context of his pangenesis
hypothesis, which has now been totally dismissed. Hugo De Vries investi-
gated extensively peloric Linaria; he observed that the typical peloria repro-
duces five times the ventral part of the normal flower, and suspected that
repetitions of other parts could also occur. Indeed, he reported a rare
regular variant with a tubular corolla lacking spurs (cited in Gustafsson,
1979). Nowadays, several peloric mutants are commercialized as horticul-
tural varieties (e.g. in Antirrhinum, Sinningia and orchids).
Author's personal copy
88 H. CITERNE ET AL.
The elucidation of the genetic bases of peloria in Anthirrhinum and Linaria
came more than two centuries after the discovery of peloria, through the
work of E. Coen and R. Carpenter’s group (Section VI). Since these ground-
breaking results, several research groups have been investigating the genetic
origin of symmetry in a growing number of plant families, relying mostly on
a candidate gene approach. In recent years, results have been obtained that
point to a key role of the TCP gene family in independent occurrences of
bilateral symmetry. These advances have prompted several excellent reviews
in the last year (Busch and Zachgo, 2009; Hileman and Cubas, 2009; Jab-
bour et al., 2009a; Preston and Hileman, 2009; Rosin and Kramer, 2009). At
the dawn of a new era in evolutionary biology opened up by high-
throughput DNA sequencing technologies and functional genomics, it may
be of interest to examine what we know about floral symmetry, not only
from a genetic but also from evolutionary, developmental and ecological
points of view. This review explores these various fields in an attempt to
summarize existing knowledge and open new prospects for future research.
II. DEFINITIONS OF SYMMETRY
Symmetry is a geometrical concept that can be applied to either living
organisms or non-living objects. In biology, rotational and reflection sym-
metries are generally sufficient to describe the range of forms (Almeida and
Galego, 2005; Manuel, 2009). Rotational symmetry is defined as the rotation
of an object by an angle of 360˚/n (n>1) that does not change the object. In
reflection (flip or mirror) symmetry, an axis can be defined such that two
points on a perpendicular line to this axis are at equal distance from it; in
other words, this axis defines two mirror images. These two types of sym-
metry have formed the basis for the discrete categories used to describe
flower symmetry.
Floral symmetry is generally defined from an “en face” view at anthesis,
taking into consideration a planar projection of the flower, which justifies
the use of the term “axis” of symmetry. Very few studies of floral symmetry
integrate the three-dimensional structure of the flower (Leppik, 1972), where
it is more appropriate to talk about “planes” of symmetry. The classification
reflecting the three dimensions is complex and unwieldy, and simple defini-
tions of flower types are generally preferred. Nevertheless, taking into
account the three-dimensional structure may be important for understand-
ing the adaptive value of particular shapes in relation to interactions with
pollinators. Although in name floral symmetry refers to the entire structure
with all its constitutive parts (sepals, petals, androecium and gynoecium), the
Author's personal copy
89THE EVOLUTION OF FLORAL SYMMETRY
descriptions apply primarily to the perianth (particularly the corolla) and
sometimes to the androecium. The symmetry of the gynoecium is often
described independently from other floral organs. It is generally defined on
the basis of ovule placentation, that is, according to internal compartmenta-
lization since the carpels are often partially or totally fused (with fused ovary
walls, styles and stigma). Moreover, the gynoecium is often affected by a
reduction in carpel number compared to the merism of the perianth. It is
therefore frequently left out when characterizing floral symmetry.
Flowers appear predominantly symmetrical and rarely asymmetrical.
Among symmetrical flowers, two major types are classically recognized:
radial symmetry—also called polysymmetry or actinomorphy (from the
Greek word aktis a!"#&: sunray), and bilateral symmetry—also called
monosymmetry or zygomorphy (from the Greek word zugon $%&on: a 
device joining two objects together). Actinomorphy is characterized by
both rotational and reflection symmetry. In actinomorphic flowers, all
organs of a same type (i.e. sepals, petals or stamens) are identical in
shape and size, and evenly distributed around the floral receptacle
(Fig. 1B–E). Zygomorphy has only reflection symmetry along a single
axis (Fig. 1G–J). The term zygomorphy was first introduced by the German
botanist Alexander Braun (1835). Zygomorphic flowers have also been
referred to as irregular (Sprengel, 1793), which is misleading in suggesting
an absence of symmetry, or as symmetrical (Mohl, 1837; Wydler, 1844),
which does not strictly differentiate between radial and bilateral symmetry.
Although inappropriate, these terms are still being used in the literature
(see, for instance, Coen et al., 1995; Luo et al., 1996). A rarer type of
symmetry is disymmetry, where two different orthogonal symmetry
axes can be distinguished (Fig. 1N). It occurs in a few clades of magnoliids
(Winteraceae (Ronse De Craene et al., 2003)), basal eudicots
(e.g. Fumarioideae (pers. obs.) and Eupteleaceae (Ren et al., 2007)), and
core eudicots (Oleaceae (Sehr and Weber, 2009), Brassicaceae (Ronse De
Craene et al., 2002; Rudall and Bateman, 2002), Begoniaceae (Rudall and
Bateman, 2002) and Balanophoraceae (Eberwein et al., 2009)).
For most zygomorphic flowers, the single symmetry axis is vertically
oriented, passing through the inflorescence apex (adaxial or dorsal side)
and the subtending bract (abaxial or ventral side). Consistently, bilaterally
symmetrical flowers are also described as dorsoventrally asymmetrical
(Carpenter and Coen, 1990; Coen, 1991). Cases of oblique zygomorphy
(where the symmetry axis deviates from the dorsoventral position)
and transverse zygomorphy (where the symmetry axis is horizontal) occur
in some families. Oblique zygomorphy is found in Sapindaceae and
Vochysiaceae (Eichler, 1878), Musaceae (Lane, 1955; Schumann, 1900;
Author's personal copy
(A) (B) (C) (D) (E)
(F) (G) (H) (I) (J)
(K) (L)
(M)
Flag flower Lip flower
(N) (O) (P) (Q) (R)
90 H. CITERNE ET AL.
Fig. 1. Different types of floral symmetry illustrated by examples from monocots
and eudicots. Symmetry types are represented in A (actinomorphy), F (zygomorphy),
M (disymmetry) and O (asymmetry). Red dotted lines: symmetry axes. B:
Hibiscus sp. (Malvaceae, eudicot), C: Aquilegia vulgaris (Ranunculaceae, eudicot), D:
Nigella damascena (Ranunculaceae, eudicot), E: Iris pseudacorus (Iridaceae, monocot),
G: Corydalis sp. (Papaveraceae s.l., eudicot), H: Orchis militaris (Orchidaceae, monocot),
I: Lobelia tupa (Campanulaceae, eudicot), J: Alstroemeria sp. (Alstroemeriaceae,
monocot), K: flag flower: Lathyrus sp. (Fabaceae, eudicot), L: lip flower: Lamium
galeobdolon (Lamiaceae, eudicot), N: Lamprocapnos spectabilis (Papaveraceae s.l.,
eudicot), P: Vinca minor (Apocynaceae, eudicot), Q: Tibouchina urvilleana
(Melastomataceae, eudicot), R: Strelitzia reginae (Strelitziaceae, monocot). Photographs:
F. Jabbour, except 1N: C. Damerval. (See Color Insert.)
Winkler, 1930), Marantaceae (Kunze, 1985), Solanaceae (Tucker, 1999),
Moringaceae, Bretschneideraceae (now included in Akaniaceae) (Ronse
De Craene et al., 1998, 2000, 2002) and Heliconiaceae (Kirchoff et al.,
2009). Transverse zygomorphy is found in Sabiaceae (Wanntorp and
Ronse De Craene, 2007) and Papaveraceae (Corydalis and Fumaria). In
the latter, however, rotation of the flower pedicel results in vertically
oriented flowers at maturity (Fig. 1G).
Author's personal copy
91THE EVOLUTION OF FLORAL SYMMETRY
The single symmetry axis of zygomorphic flowers can originate from an
unequal distribution of organs at maturity and/or the superimposition of
secondary identities on the basic sepal, petal or stamen identity. Examples
of unequal distribution of organs of a same identity can be found in
Asteridae, where the corolla is organized following a few conserved pat-
terns, the most common being 2|3 (two petals in the dorsal position|three
in the ventral position), 4|1 and 0|5 (Donoghue et al., 1998). The concept
of secondary identity translates morphological differentiation (including
micromorphological specificities) within a given organ type. For example,
in the species Antirrhinum majus (Veronicaceae, Asteridae) where the
corolla has an upper lip formed by two fused petals and a lower lip
formed by the three other petals (2|3 type), three petal identities
(dorsal - single petal—two petals, lateral—two petals and ventral—one
petal) are recorded (Corley et al., 2005; Luo et al., 1996). Similarly, in
Fabaceae, the standard (dorsal—single petal), wings (lateral—two petals)
and keel (ventral—two petals more or less fused) can be considered as
having three different petal identities. The combination of unequal distribu-
tion and secondary identities of petals makes the corolla of many zygo-
morphic flowers appear bilabiate, leading to the definition of two main
types of flowers, namely, lip (or gullet—Faegri and van der Pijl, 1966) and
flag (Endress, 1994). The distinction comes essentially from the placement of
sexual organs in the upper (lip type) or lower (flag type) part of the flower (see
Section V). Lip flowers are essentially found in Lamiales (Fig. 1L), Campa-
nulales, Zingiberales and Orchidales. Flag flowers are encountered in Faba-
ceae (Fig. 1K), in Polygalaceae and in Papaveraceae (Proctor et al., 1996). In
rare cases such as in tribe Delphinieae (Ranunculaceae), secondary identities
develop on spirally inserted organs (Jabbour et al., 2009b).
Symmetry is not constant within natural populations, and small devia-
tions can occur around a main type (see Section V). In addition, within the
discrete categories defined above, a quantitative element can be added to
classify flowers according to the degree of differentiation or deviation from
radial or bilateral symmetry they exhibit. For instance, flowers can be
described as almost actinomorphic, slightly zygomorphic or almost
zygomorphic (Endress, 1999). There are three main developmental causes
for such deviations. First, spiral phyllotaxis implies that organs sharing the
same identity are not inserted on a same plane, resulting in flowers that are,
strictly speaking asymmetric, even though they can appear actinomorphic
or zygomorphic. This is the case in most members of Ranunculaceae, for
instance, in tribe Delphinieae with “zygomorphic” flowers, and in Adonis
and Nigella that have “actinomorphic” flowers. Second, the curvature of
organs or groups of organs can result in a heterogeneous spatial
Author's personal copy
92 H. CITERNE ET AL.
distribution of organs and can also create imperfectly symmetrical flowers
(e.g. both the androecium and gynoecium are curved in Geranium
(zygomorphic; Geraniaceae), Solanum (actinomorphic; Solanaceae) and
Gladiolus (zygomorphic; Iridaceae). Finally, the degree of zygomorphy
can depend on the position of the flower along the inflorescence. In several
groups with actinomorphic flowers, the flower can become slightly zygo-
morphic due to the bending of floral organs when compressed laterally by
neighbouring flowers (Endress, 1999).
Very few species have asymmetric flowers (Fig. 1P–R). Asymmetric
flowers with chaotic organization occur in a few basal angiosperms, where
the innermost perianth organs and the stamens are irregularly arranged
from inception (e.g. in some Zygogynum species (Winteraceae), Endress,
1999). Asymmetry can also be the result of precise developmental processes
that are reproducible among members of the same species (e.g. in Fabaceae,
Lamiales, Orchidaceae and Zingiberales). In this case, asymmetry can be
found in all floral parts (e.g. in Vochysiaceae (Tucker, 1999)) or in just a
single organ type (e.g. in Senna (Caesalpinioideae), where asymmetry affects
only the gynoecium). It can be due to a reduction in organ number, such as
in Cannaceae and Valerianaceae (e.g. flowers in Canna and Centranthus
have a single lateral stamen). Another form of asymmetry is enantiomor-
phy, an asymmetry polymorphism resulting in flowers of two types that are
mirror images. It can be due to the formation of both left- and right-
contorted (sinistrorse or dextrorse) corollas (e.g. Wachendorfia (Haemodor-
aceae), Endress, 1999, 2001a; Helme and Linder, 1992; Senna (Fabaceae),
Marazzi and Endress, 2008; Banksia (Proteaceae), Renshaw and Burgin,
2008), or the deflection of the style to the left or to the right (enantiostyly;
see Graham and Barrett, 1995) such as in Wachendorfia paniculata (Hae-
modoraceae) (Endress, 2001a; Jesson and Barrett, 2002; Jesson et al., 2003;
Ornduff and Dulberger, 1978; Tucker, 1996, 1999) and Paraboea rufescens
(Gesneriaceae) (Gao et al., 2006). In most enantiostylous species, style
deflection is associated with a single pollinating anther opposite the style.
Monomorphic enantiostyly, in which individuals exhibit both flower
morphs (e.g. Solanum rostratum (Endress, 2006)) has been described in at
least 10 monocot and eudicot families, whereas dimorphic enantiostyly,
where the two morphs occur on separate plants, has been recorded only
in seven species belonging to three monocot families (reviewed in Jesson
and Barrett, 2002, 2003). Rarely, only one morph occurs within a species
(Endress, 1999) (e.g. Strobilanthinae (Acanthaceae); Moylan et al., 2004).
Examination of the developmental process leading to enantiostyly has
shown that it resulted from unequal cell division rates at the base of the
style (Douglas, 1997; Jesson et al., 2003).
Author's personal copy
93THE EVOLUTION OF FLORAL SYMMETRY
III. SYMMETRY AND FLOWER DEVELOPMENT
Studies of flower development have benefited from the development of
scanning electronic microscopy in the mid 20th century, and various authors
have made remarkable contributions to our understanding of flower devel-
opment and symmetry (e.g. Endress, 1999; Ronse De Craene, 2003; Tucker,
2003a). The developmental processes underlying the different types of floral
symmetry at anthesis appear highly diverse and provide information regard-
ing the evolution of floral diversity.
A. ESTABLISHMENT OF SYMMETRY AT VARIOUS STAGES DURING
DEVELOPMENT
In the first stages of development, phyllotaxis and direction of organ initiation
are crucial parameters influencing meristem symmetry (Dong et al., 2005;
Tucker, 2002, 2003b). There are two types of phyllotaxis, spiral and whorled.
In some taxa there is a combination of both spiral and whorled phyllotaxis,
with some organs inserted on a spiral and others on whorls (e.g. Aquilegia
(Ranunculaceae) where all organs are inserted on whorls, except sepals
(Tucker and Hodges, 2005)). In spiral phyllotaxis, organs are initiated one at
a time, with an equal time interval (plastochron) between organs of a same
type. In whorled phyllotaxis, initiation of organs of a same type can be
synchronous or unidirectional. Usually, and provided that growth is homo-
geneous, the first organs initiated are the largest at maturity (Goebel, 1905) but 
there are numerous exceptions (e.g. papilionoid corollas and androecia). An
exhaustive list of taxa spanning all major angiosperm clades in which organo-
genesis follows a unidirectional order is given by Tucker (1999).
Zygomorphy can be observed before organ initiation, and persist through-
out development, or can appear later at various stages of development.
For instance, the floral meristem of A. majus has initially the form of a loaf
(oval, thus disymmetric), then becomes pentagonal and lastly zygomorphic
(Vincent and Coen, 2004). According to the authors, zygomorphy is estab-
lished in this species at the 15th plastochron among the 58 identified, that is,
after 9% of the floral developmental sequence, with the acquisition of dorsal
and ventral identities. Another instance of early establishment of zygomorphy
during development is Lotus japonicus (Fabaceae) (Feng et al., 2006), where
the initiation of floral organs is unidirectional (Dong et al., 2005).
Zygomorphy can also be established late in development. The developmental
processes underlying late-onset zygomorphy can include heterogeneous growth,
heterochrony (a temporal shift from the ancestral condition in a developmental
process (Douglas and Tucker, 1996; Rudall and Bateman, 2004; Tucker, 1999))
Author's personal copy
94 H. CITERNE ET AL.
and/or late elaboration of structures such as glands or spurs (Tucker, 1999). Late
zygomorphy appears to be frequent in taxa embedded in groups with predomi-
nantly actinomorphic flowers (Endress, 1999), such as Ranunculaceae (Jabbour
et al., 2009b). In the tribe Delphinieae (Ranunculaceae), it originates from
heterogeneous growth of petals and sepals after ontogenesis is completed, and
the elaboration of spurs on the two petals and single sepal on the adaxial side
(Jabbour et al., 2009b). InIberis amara, which belongs to Brassicaceae, a family
with predominantly actinomorphic flowers, dorsal and ventral petals begin to
grow in a heterogeneous way only after the onset of stamen initiation, leading to
a zygomorphic mature flower (Busch and Zachgo, 2007).
Both early and late zygomorphy occur in the Asteridae. For instance, zygo-
morphy is apparent from the onset of organ initiation in the subfamily Oroban-
chaceae, but it is preceded by an actinomorphic stage during development in the
Plantaginaceae, Bignoniaceae and Lecythidaceae (Tucker, 1999).
B. IMPACT OF GROWTH AND ORGAN ELABORATION ON FLORAL SYMMETRY
Reduction, suppression and differential elaboration of organs determine
structural symmetry sensu Rudall and Bateman (2003), as opposed to zygo-
morphy caused or reinforced by differential petal colouration (Fig. 1J),
displacement or unequal organ expansion during development. Organ
abortion, which can result from totally suppressed or early arrested growth,
is a major determinant of zygomorphy. As a result of heterochrony, an
organ can become progressively aborted at an earlier stage until its total
suppression (e.g. Li and Johnston, 2000; Mitchell and Diggle, 2005). One or
several organ types can be affected. A large monocot group with mostly
zygomorphic flowers by organ reduction is Poales sensu lato (Kellogg, 2000;
Rudall and Bateman, 2004). The three grass lodicules are hypothesized to be
homologous to a single perianth whorl, based on morphological, develop-
mental and genetic evidence (see, for instance, Schmidt and Ambrose, 1998).
Since the dorsal lodicule is absent from most derived grasses (e.g. Hordeum,
Pooideae), the presence of only two ventral lodicules renders the grass
flowers structurally zygomorphic (Rudall and Bateman, 2004).
The female flowers of Stephania dielsiana (Menispermaceae) have a single
sepal, two petals and a single carpel, which makes them zygomorphic due to
organ reduction, compared to the trimerous actinomorphic male flowers
(Wang et al., 2006). In Sinningia cardinalis, A. majus and Rehmannia angulata
(all belonging to different families within Lamiales), the dorsal stamen is
reduced to a staminode and the degree of reduction increases from the former
to the latter, reinforcing the zygomorphic shape of the flower (Endress, 1998).
Strong morphological differentiation at the perianth level is often associated
Author's personal copy
95THE EVOLUTION OF FLORAL SYMMETRY
with alterations in the androecium, including stamen reduction (staminodes)
or even abortion (Rudall and Bateman, 2004). In Gesneriaceae, for instance,
the strength of corolla zygomorphy was found to be associated with alteration
in stamen number (Endress, 1997). In zygomorphic Proteaceae, a bilabiate
perianth is associated with ventral (e.g. Placospermum) or dorsal
(e.g. Synaphea) staminodes (Douglas, 1997; Douglas and Tucker, 1996).
Differential organ elaboration contributes to bilateral symmetry at matur-
ity. It includes fusion, curvature (see Section II) and the formation of glands or
spurs. A well-known example of differential fusion of organs of a same identity
is found in the bilabiate corolla of A. majus, but also in the ligulate flowers of
Asteraceae (which can have two reduced and three large fused petals (2|3),
three fused petals only (Asteroideae), five fused petals (Cichorioideae) or one
reduced and four large fused petals (e.g. Barnadesia) (Ronse De Craene,
2010)). Another example is found in Proteaceae where tepals are fused post-
genitally and their partitioning is either equal, resulting in an actinomorphic
flower, or unequal, rendering the flower zygomorphic (e.g. Lomatia).
Spurs are floral appendages that appear late during development. Their
origin is highly diverse, developing on sepals (e.g. Impatiens (Balsaminaceae)),
petals (e.g. Viola (Violaceae)), receptacular hypanthia (e.g. Tropaeolum (Tro-
paeolaceae)), stamen–petal tubes (e.g. Diascia (Scrophulariaceae)) or at the base
of the ovary (e.g. Pelargonium). The formation of spurs can affect the symmetry
of a flower. When the number of spurs is equal to the merism of the flower
(e.g. Epimedium (Berberidaceae), Aquilegia (Ranunculaceae) and Halenia
(Gentianaceae)), the flower is actinomorphic. Flowers with a single spur
(e.g. Corydalis), or a pair of spurs (e.g. Diascia, Delphinium, Dicentra), are
zygomorphic or disymmetric. The presence of a single spur can also determine
the orientation of the symmetry axis. The development of a spur in species of
Tropaeolum changes the symmetry from oblique to median zygomorphy (Ronse
De Craene and Smets, 2001). It has been shown that in Asteridae the evolution
of floral symmetry is tightly correlated with that of spurs, and that zygomorphy
is a prerequisite for the evolution of single or pairedspurs (Jabbour et al., 2008).
C. DEVELOPMENTAL TRAJECTORIES AND FLOWER SYMMETRY
Following organ initiation, the major determinants of floral symmetry are organ
growth, differentiation and distribution of mature organs. The symmetry of
mature flowers can be largely independent of phyllotaxis and organ initiation,
and flowers with either whorled (with or without unidirectional initiation) or
spiral phyllotaxis can appear actinomorphic or zygomorphic.
Figure 2 proposes theoretical examples combining three developmental
processes taking part in the establishment of flower symmetry at anthesis,
Author's personal copy
Developmental processes Symmetry of adult flower
Initiation I Growth G Differential elaboration D
Homogeneous Iα
Homogeneous Gα
Heterogeneous Gβ
Absent Dα Iα | Gα | Dα
Actinomorphy without change
of symmetry during
development
Present Dβ Iα | Gα | Dβ
Late zygomorphy
Absent Dα Iα | Gβ | Dα
Zygomorphy with a change
of symmetry during
development
Present Dβ Iα | Gβ | Dβ
Zygomorphy with a change
of symmetry during
development
Heterogeneous Iβ
Homogeneous Gα
Heterogeneous Gβ*
Absent Dα Iβ | Gα | Dα
Early zygomorphy
Present Dβ Iβ | Gα | Dβ
Early zygomorphy
Absent Dα Iβ | Gβ* | Dα
Actinomorphy with a change
of symmetry during
development
Present Dβ Iβ | Gβ | Dβ
Zygomorphy with changes
of symmetry during
development
96 H. CITERNE ET AL.
Fig. 2. Theoretical developmental trajectories combining different states for three
processes (organ initiation, growth and differential elaboration) resulting in different types
of floral symmetry. Two states are considered for each process: synchronous (Ia) or 
asynchronous (Ib) initiation, homogeneous (Ga) or heterogeneous (Gb) growth, and
absence (Da) or presence (Db) of differential elaboration. Combining the two states for
the three developmental processes results in eight theoretical outcomes. For example, the
Ib | Gb | Da trajectory has an actinomorphic outcome because the heterogeneous growth
compensates for the unidirectional initiation of organs (indicated by Gb*). Black circle:
floral meristem. Black/gray disk: organ primordium. Black star: elaborated organ. The
colour of disks is lighter for organs initiated later. The size of disks is proportional to the
primordium growth rate. Stars of different shapes represent differentiated organs. Red
line: the single axis of symmetry in zygomorphic stages. (See Color Insert.)
Author's personal copy
97THE EVOLUTION OF FLORAL SYMMETRY
namely, initiation, growth and differential elaboration of organs of a same
type. Two states are considered here for each process: synchronous (Ia) or 
asynchronous (Ib) initiation, homogeneous (Ga) or heterogeneous (Gb)
growth and absence (Da) or presence (Db) of differential elaboration. The
combination of these three processes results in eight developmental trajec-
tories, producing either zygomorphic or actinomorphic flowers at maturity
(Fig. 2). Although this representation oversimplifies complex developmental
processes, it serves to illustrate how similar states at maturity may result
from different developmental pathways, suggesting that the underlying
molecular agents controlling floral symmetry may also be different. Actino-
morphic flowers can originate from disymmetric or zygomorphic develop-
mental stages (Endress, 1994; Ronse De Craene and Smets, 1994). Tsou and
Mori (2007) report cases where symmetry changes more than once during
flower development, such as in Cariniana micrantha (Lecythidaceae) where
flowers are successively zygomorphic (sepals initiate asynchronously, Ib),
then almost actinomorphic (when sepals are initiated, petals initiate and
grow synchronously, Gb), and finally zygomorphic (a hood is derived from
the abaxial rim of the ring meristem, Db) (Endress, 1994; Tsou and Mori,
2007). A similar situation is found in the genus Couroupita (Lecythidaceae)
in which the upper half of the developing flower is initially retarded at first,
resulting in an early zygomorphic stage. The flower becomes actinomorphic
when stamens and carpels initiate and then zygomorphic again when the
androecium proliferates and forms a tongue-like structure with sterile sta-
mens (Endress, 1999, Tsou and Mori, 2007).
Floral zygomorphy thus relies on complex and potentially numerous
developmental trajectories, and this relates to the highly homoplastic nature
of this trait in adult flowers. A detailed knowledge of symmetry changes
during development is important for (1) understanding symmetry transitions
among related species, (2) understanding the repeated establishment of
bilateral symmetry across angiosperms and (3) interpreting genetic data
underlying these morphological changes.
IV. EVOLUTION OF FLOWER SYMMETRY
A. DISTRIBUTION OF SYMMETRY AMONG EXTANT ANGIOSPERMS
Zygomorphy has always been considered a derived trait in angiosperms
compared to actinomorphy. Studies that have attempted to infer the ancestral
features of the first angiosperms (e.g. Doyle and Endress, 2000; Endress and
Doyle, 2009) conclude that the first angiosperms had actinomorphic flowers.
Author's personal copy
98 H. CITERNE ET AL.
The exact number of transitions toward zygomorphy throughout all angios-
perms is unknown. The estimated numbers given in papers that deal with the
evolution of zygomorphy vary according to the paper (e.g. more than 25 in
Cubas, 2004, at least 38 in Zhang et al., 2010). However, it generally reflects
the number of families in which zygomorphy is found, but not the actual
number of transitions from actinomorphy to zygomorphy. Indeed, such
transitions can potentially happen several times within a family. The exact
number of transitions can only be obtained through the detailed reconstruc-
tion of the evolution of the character “floral symmetry” (i.e. character
optimization) on a robust and well-resolved phylogenetic tree of angios-
perms. Variation in the number of families displaying zygomorphy may
be due to changes in the classification of angiosperms. We conducted a
detailed phylogenetic study of the evolution of zygomorphy in angiosperms
using updated phylogenies based on the latest classification (APG3: The
Angiosperm Phylogeny Group, 2009 and http://www.mobot.org/MOBOT/
research/APweb). Our results indicate that zygomorphy evolved only once in
“basal angiosperms” (a paraphyletic assemblage consisting of all angiosperm
taxa that have diverged before the divergence of monocots and eudicots), at
least 23 times independently in monocots (see Section IV.C for more detail)
and at least 46 times independently in eudicots (see Figs. 4 and 5). The number
of independent transitions from actinomorphy to zygomorphy is therefore
much higher (at least 70, almost twice the highest number given in the
literature) than all previously estimated numbers.
Many speciose taxa present strongly zygomorphic flowers (like, for
instance, Faboideae, Orchidaceae, Poaceae or the order Lamiales), which
is consistent with the hypothesis that zygomorphy could play a positive role
in speciation rates. This was rigorously tested using a phylogenetic frame-
work comparing species richness in sister clades differing in their floral
symmetry (Sargent, 2004). In 15 out of 19 sister pairs identified, the lineage
with zygomorphic flowers is significantly more diverse than its sister group
with actinomorphic flowers, which gives strong support to the hypothesis
that zygomorphy is a key innovation.
B. EMERGENCE OF ZYGOMORPHY DURING ANGIOSPERM EVOLUTION IN
RELATION TO INSECT DIVERSIFICATION
The first known angiosperm remains are pollen grains dated to the Hauter-
ivian (130–136 Ma, million years ago) (Fig. 3; Feild and Arens, 2007; Friis
et al., 2006; Frohlich, 2006). The first fossil of a whorled pentamerous flower
with both petals and sepals, considered as a eudicot representative, is
recorded in the Cennomanian (Basinger and Dilcher, 1984), while fossil
Author's personal copy
99THE EVOLUTION OF FLORAL SYMMETRY
Myr
JURASSIC
Late
Early
CRETACEOUS PALEOGENE
71
93
100
112
130
140
125
89
83
65
145
56
34
23
Valanginian
Hauterivian
Barremian
Berriasian
Albian
Aptian
Cennomanian
Turonian
Santonian
Coniacian
Campanian
Maastrichtian
Paleocene
Eocene
Oligocene
First bee fossil: Melittosphex burmensis
Fossils of monoaperturate (black) and triaperturate
(white) pollen grains
Fossils of flower; black: first remains related to
Nympheales; white: first cyclic eudicot flower; light gray:
fossils ancestral to zygomorphic flowers; dark gray:
zygomorphic flower
Fig. 3. Timescale showing the first appearance of important floral features during
angiosperm evolution, based on the fossil record. The vertical black bars indicate two
major diversification periods, which coincide with the appearance of new floral traits
(from Crepet, 2008; Crepet and Niklas, 2009; Dilcher, 2000; Friis et al., 2001, 2006,
2010; Poinar and Danforth, 2006).
flowers with spirally inserted floral parts are dated to the Barremian–Aptian
(Crepet, 2008). Transition to a whorled organization of the flower possibly
opened the way for further floral innovations, which appear especially
numerous during the Turonian geological stage, coinciding with a period
of radiation leading to angiosperm dominance in some floras of the mid-
Cretaceous (Crepet, 2008; Crepet and Niklas, 2009; Friis et al., 2010).
Bilateral symmetry is thought to have first evolved during this first angios-
perm radiation, based on Turonian fossils with asymmetric flowers with
staminodal nectaries that could be considered “precursors” of zygomorphic
flowers, as suggested by their resemblance to the flowers of extant taxa
adapted to specialist pollinators (Crepet, 1996, 2008). Remains of clearly
zygomorphic flowers, as well as brush flowers (with numerous long
stamens), are recorded in Paleocene–Eocene deposits (Fig. 3; Crepet and
Niklas, 2009; Dilcher, 2000).
Author's personal copy
100 H. CITERNE ET AL.
The coevolution of plants and insects has been considered for a long time
to be the primary cause of radiation of plants and of some insect groups
(correspondence between Saporta and Darwin (1877) cited in Friedman,
2009; Grant, 1949; Grimaldi, 1999; but see Waser, 1998; Gorelick, 2001).
Reconstructing the evolution of pollination modes on the phylogeny of
extant basal angiosperms clearly indicates that insect pollination is the
ancestral state (Hu et al., 2008). Early flowering plants may have been
pollinated by a wide diversity of insects such as beetles, primitive moths,
various flies and possibly sphecid wasps ancestral to bees (Bernhardt, 2000;
Grimaldi, 1999; Hu et al., 2008). Extant bees, that comprise many extant
pollinators of zygomorphic flowers, constitute a derived natural group of
spheciform wasps (vegetarian wasps) that almost certainly originated in the
Mid to Late Cretaceous (Grimaldi, 1999; Poinar and Danforth, 2006).
Corbiculate bees (honeybees, bumblebees, orchid bees and stingless bees)
extensively diversified in the Early Tertiary (Grimaldi and Engel, 2005).
Interestingly, the emergence of floral innovations and derived pollinators
co-occurs with the angiosperm radiations of the Turonian (89–93.5 Ma) and
the Upper Paleocene Lower Eocene periods (Crepet and Niklas, 2009). In
addition, a significant correlation was observed between angiosperm species
number and insect family number during Cretaceous–Tertiary geological
stages. Even though correlations cannot be considered to necessarily reflect
causative influence of one group on the other, it may indicate reciprocal
driving mechanisms for diversification (Crepet, 1996). The fossil records
thus indicate that zygomorphy evolved in several plant lineages during the
same period as the rise of some bee families, supporting the hypotheses
of coevolution with these insects as the triggering mechanism for floral
symmetry evolution (e.g. Neal et al., 1998).
C. ARCHITECTURE OF FLOWERS AND INFLORESCENCES—WHAT IS THEIR
IMPACT ON FLORAL SYMMETRY
Perianth symmetry is only one of the numerous floral features that can
present variation. Because bilateral symmetry affects the shape of the
meristem sometimes from the earliest stages of floral development, the
issue of how changes in floral symmetry may have been constrained or
canalysed by other features of the flower or the inflorescence architecture
during the course of evolution can be raised. When flowers are grouped in
inflorescences, they become necessarily constrained by neighbouring flow-
ers during their development, which may potentially affect flower shape at
adult stage. Intrinsic features of flowers such as the number of organ
primordia could also be prone to have such an effect, by exerting sterical
Author's personal copy
101THE EVOLUTION OF FLORAL SYMMETRY
constraints on flower shape. In the following paragraphs, we examine the
relationship between floral symmetry and selected features of flowers and
inflorescences.
1. Flower Symmetry and Inflorescences
It has been suggested that the symmetry of flowers is somewhat linked to the
way they are organized in inflorescences (Coen and Nugent, 1994; Rudall
and Bateman, 2010). Inflorescence architecture among angiosperms is very
diverse, which has led to a complex and sometimes ambiguous typology
(Prenner et al., 2009 and references therein). Two basic types can be distin-
guished based on the fate of the terminal meristem. In cymose inflorescences,
the terminal meristem forms a flower, and inflorescence growth results from
the development of one or more lateral axes, which in turn reiterate this
pattern (sympodial growth). All axes terminate in a flower. In racemose
inflorescences, the terminal meristem promotes inflorescence growth by
producing lateral meristems that will produce either flowers or secondary
axes reiterating the main axis pattern (monopodial growth). Terminal
meristems do not produce flowers but eventually become exhausted. Inflor-
escences can be simple or compound, associating diversely cymose and/or
racemose modules (Prenner et al., 2009).
Inflorescence axes are observed in fossil records as early as flowers, but
their interpretation is very difficult. The particular architecture of the repro-
ductive unit of Archaefructus (Barremian–Aptian), now considered to be
related to Nympheales, has been interpreted either as a multipartite naked
flower with an elongated axis (Sun et al., 2002) or as an ebracteate racemose
inflorescence bearing simple unisexual and naked flowers (Friis et al., 2003).
Several spike-like or even compound inflorescences from the mid-
Cretaceous, densely covered with small flowers, have been found (Friis
et al., 2006). Parkin (1914) suggested that the primitive inflorescence type
is determinate, meaning in its simplest expression a solitary flower (discussed
in Rudall and Bateman, 2010). Morphological analyses of extant “basal”
taxa and fossil records in a phylogenetic framework suggest grouping of
flowers in inflorescence rather than solitary as the ancestral state, but the
ancestral state for inflorescence remains equivocal (Endress and Doyle,
2009). This result apparently comes from the authors’ interpretation of
Archaefructus and the inflorescence of Nympheales as racemose, which is a
matter of debate (Rudall and Bateman, 2010).
Classically, it is stated in the literature that radially symmetric flowers are
found in both racemose and cymose inflorescences whereas zygomorphic
flowers preferentially occur in racemose inflorescences (Coen and Nugent,
Author's personal copy
102 H. CITERNE ET AL.
1994; Dahlgren et al., 1985). Indeed, the meristems of grouped flowers are
embedded in an asymmetric morphogenetic field defined by the flower
subtending bract toward the ventral side and the terminal inflorescence
meristem toward the dorsal side (Coen and Nugent, 1994). The existence
of different cellular or physiological contexts for terminal and lateral mer-
istems can be illustrated by terminal peloria that occurs in species that
normally produce zygomorphic flowers grouped into racemose inflores-
cences. In the centroradialis mutant of A. majus, the inflorescence meristem
shifts to a floral identity, and the resulting terminal flower is radially sym-
metric, very similar to lateral ones in the cycloidea mutant (Clark and Coen,
2002). Terminal peloria in eudicots have also been reported in species
belonging to the Lamiales, Ranunculaceae (Rudall and Bateman, 2004)
and Fumarioideae (Cysticapnos vesicarius, pers. obs.). Morphogenetic gra-
dients may also account for the different symmetry of central and marginal
flowers in derived “flower-like” inflorescences, such as the radiate capitula in
Asteraceae, the corymb of I. amara or the umbels in some Apiaceae (e.g. in
Daucus carota, pers. obs.). It can be speculated that a prerequisite for the
evolution of zygomorphy is the emergence of asymmetric morphogenetic
fields in an inflorescence.
We examined the relationship between floral symmetry and inflorescence
growth pattern (monopodial versus sympodial) by conducting a detailed
comparative study of the evolution of both characters in monocots, taking
into account the most recent phylogenetic advances in this large clade.
Figure 4 presents two mirror phylogenetic trees of the monocots on which
flower symmetry (left-hand tree) and inflorescence type (right-hand tree)
have been optimized using Maximum Parsimony. It shows that zygomorphy
evolved at least 23 times independently from actinomorphy throughout
monocots, and not only in the context of a racemose (indeterminate) inflor-
escence. Zygomorphy evolved together with single flowers in various
families, for example, in Arachnites uniflora (Corsiaceae), in Thismia
americana (Thismiaceae), in Tecophilaea cyanocrocus (Tecophilaeaceae), in
Paphiopedilum appletonianum (Orchidaceae) and in Gethyllis atropurpureum
(Amaryllidaceae) and it is found in association with cymose (at least
the terminal units) inflorescences in several families of Zingiberales
(in Musaceae, Heliconiaceae and Strelitziaceae), in Commelinales (in
Haemodoraceae and Commelinaceae), in Liliales (in Alstroemeriaceae)
and in Asparagales (in Doryanthaceae and Amaryllidaceae). Flowers in
some of these taxa may be quite strongly zygomorphic, like in Zingiberales
or Gilliesia (Amaryllidaceae) for example (with organ reduction and synor-
ganization), indicating that zygomorphy is not necessarily precluded by the
sympodial growth of cymose inflorescences. In other words, in monocots,
Author's personal copy
Type of symmetry Type of inflorescence
Racemose
Actinomorphy
At least terminal units cymose
Zygomorphy
Panicle
Asymmetry
Single flowers
No perianth
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
103THE EVOLUTION OF FLORAL SYMMETRY
Fig. 4. (A) Mirror trees of monocots showing the evolution of perianth symmetry and
inflorescence type, optimized using Maximum Parsimony. Left tree: optimization of
perianth symmetry. Several colours on the same branch denote ambiguity in the ancestral
state. Right tree: optimization of inflorescence type. Several colours on the same branch
denote ambiguity in the ancestral state. Coloured lines refer to the orders of monocots.
Asterisks indicate taxa that produce flowers possessing more than six stamens. The topology
of the tree was established using information from the Angiosperm Phylogeny website
(http://www.mobot.org/MOBOT/research/APweb/) and detailed phylogenies obtained
from the literature when necessary. Species represented in this tree were selected according
the following criteria: (1) all monocot families are represented by at least one species, and (2)
families in which there is variation for at least one of the characters examined are represented
by two or more species. Botanical descriptions were mostly obtained from Dahlgren et al.
(1985). (B) From left to right and top to bottom: names of the terminal taxa (species)
included in the tree. (See Color Insert.)
Author's personal copy
Costus speciosus (Costaceae)
Hedychium coronarium (Zingiberaceae)
Canna glauca (Cannaceae)
Maranthochloa cuspidata (Maranthaceae)
Heliconia magnifica (Heliconiaceae)
Orchidenta maxillarioides (Lowiaceae)
Ravenala madagascariensis (Strelitziaceae)
Phenakospermum guinanense (Strelitziaceae)
Strelitzia reginae (Strelitziaceae)
Musa acuminata (Musaceae)
Haemodorum corymbosum (Haemodoraceae)
Anigozanthos flavidus (Haemodoraceae)
Wachendorfia paniculata (Haemodoraceae)
Heteranthera callifolia (Pontederiaceae)
Pontederia lanceolata (Pontederiaceae)
Philydrum lanuginosum (Phylidraceae)
Hanguana malayana (Hanguanaceae)
Tradescantia sillamontana (Commelinaceae)
Commelina forskalaei (Commelinaceae)
Dasypogon bromeliifolius (Dasypogonaceae)
Poa trivialis (Poaceae)
Oryza sativa (Poaceae)
Ochlandra stridula (Poaceae)
Arundinaria gigantea (Poaceae)
Imperata cylindrica (Poaceae)
Joinvillea plicata (Joinvilleaceae)
Ecdeicolea monostachya (Ecdeiocoleaceae)
Flagellaria guineensis (Flagellariaceae)
Dapsilanthus disjunctus (Restionaceae)
Centrolepis fascicularis (Centrolepidaceae)
Anarthria prolifera (Anarthriaceae)
Lipocarpha occidentalis
Evandra aristata (Cyperaceae)
Scirpus californicus (Cyperaceae)
Carex praeclara (Cyperaceae)
Distichia sp. (Juncaceae)
Juncus castaneus (Juncaceae)
Thurnia sphaerocephala (Thurniaceae)
Mayaca fluviatilis (Mayacaceae)
Eriocaulon taishanense (Eriocaulaceae)
Eriocaulon decangulare (Eriocaulaceae)
Abolboda linearifolia (Eriocaulaceae)
Orectanthe sceptrum (Xyridaceae)
Xyris lacerata (Xyridaceae)
Rapatea paludosa (Rapateaceae)
Pitcairnia xanthocalyx (Bromeliaceae)
Dyckia remotifolia (Bromeliaceae)
Billbergia nutans (Bromeliaceae)
Typha latifolia (Typhaceae)
Sparganium erectum (Sparganiaceae)
Retispatha dumetosa (Arecaceae)
Nypa fruticans (Arecaceae)
Caryota mitis (Arecaceae)
Phoenix dactylifera (Arecaceae)
Phytelephas macrocarpa (Arecaceae)
Phytelephas aequatorialis (Arecaceae)
Synechantus warscewiczianus (Arecaceae)
Cocos nucifera (Arecaceae)
Howea balmoreana (Arecaceae)
Dypsis lutescens (Arecaceae)
Dypsis lantzeana (Arecaceae)
Dypsis mirabilis (Arecaceae)
Neuwiedia inae (Orchidaceae)
Apostasia odorata (Orchidaceae)
Paphiopedilum appletonianum (Orchidaceae)
Vanilla planifolia (Orchidaceae)
Ophrys insectifera (Orchidaceae)
Eulophia andamanensis (Orchidaceae)
Aspidistra dodecandra (Asparagaceae)
Asparagus officinalis (Asparagaceae)
Yucca baccata (Asparagaceae)
Hosta japonica (Asparagaceae)
Aphyllanthes monspeliensis (Asparagaceae)
Sowerbaea juncea (Asparagaceae)
Lomandra insularis (Asparagaceae)
Trichlora lactea (Amaryllidaceae)
Miersia chilensis (Amaryllidaceae)
Leucocoryne purpurea (Amaryllidaceae)
Gillesia graminea (Amaryllidaceae)
Solaria miersiodes (Amaryllidaceae)
Allium vineale (Amaryllidaceae)
Gethyllis atropurpureum (Amaryllidaceae)
Gethyllis ciliaris (Amaryllidaceae)
Sprekelia formosissima (Amaryllidaceae)
Habranthus robustus (Amaryllidaceae)
Lycoris aurea (Amaryllidaceae)
Galanthus nivalis (Amaryllidaceae)
Asphodelus aestivus (Xanthorrhoeaceae)
Haworthia integra (Xanthorrhoeaceae)
Hemerocallis fulva (Xanthorrhoeaceae)
Simethis planifolia (Xanthorrhoeaceae)
Phormium cookianum (Xanthorrhoeaceae)
Arnocrinum gracillimum (Xanthorrhoeaceae)
Xanthorrhoea preissii (Xanthorrhoeaceae)
Xeronema callistemon (Xeronemataceae)
Moraea aristata (Iridaceae)
Isophysis tasmanica (Iridaceae)
Iris germanica (Iridaceae)
Geosiris aphylla (Iridaceae)
Aristea biflora (Iridaceae)
Gladiolus segetum (Iridaceae)
Crocosmia masoniorum (Iridaceae)
Crocosmia paniculata (Iridaceae)
Freesia laxa (Iridaceae)
Crocus angustifolius (Iridaceae)
Romulea citrina (Iridaceae)
Doryanthes palmeri (Doryanthaceae)
Doryanthes ensifolia (Doryanthaceae)
Tecophilaea cyanocrocus (Tecophilaeaceae)
Zephyra elegans (Tecophilaeaceae)
Conanthera bifolia (Tecophilaeaceae)
Cyanella lutea (Tecophilaeaceae)
Cyanella hyacinthoides (Tecophilaeaceae)
Cyanastrum johnstonii (Tecophilaeaceae)
Ixiolirion montanum (Ixioliriaceae)
Borya spetentrionalis (Boryaceae)
Astelia pumila (Asteliaceae)
Lanaria plumosa (Lanariaceae)
Pauridia longituba (Hypoxidaceae)
Curculigo latifolia (Hypoxidaceae)
Curculigo racemosa (Hypoxidaceae)
Hypoxis decumbens (Hypoxidaceae)
Blandfordia grandiflora (Blandfordiaceae)
Calochortus nuttallii (Calochortaceae)
Corsia unguiculata (Corsiaceae)
Arachnites uniflora (Corsiaceae)
Smilax aspera (Smilacaceae)
Heterosmilax japonica (Smilacaceae)
Heterosmilax longiflora (Smilacaceae)
Heterosmilax seisuiensis (Smilacaceae)
Gagea lutea (Liliaceae)
Ripogonum scandens (Ripogonaceae)
Philesia magellanica (Philesiaceae)
Paris quadrifolia (Melanthiaceae)
Chamaelirium luteum (Melanthiaceae)
Chionographis chinensis (Melanthiaceae)
Veratrum album (Melanthiaceae)
Campynema lineare (Campynemataceae)
Colchicum automnale (Colchicaceae)
Petermannia cirrosa (Petermanniaceae)
Luzuriagaria radicans (Luzuriagaceae)
Bomarea pardina (Alstroemeriaceae)
Alstroemeria aurantiaca (Alstroemeriaceae)
Asplundia multistaminata (Cyclanthaceae)
Pandanus candelabrum (Pandanaceae)
Croomia pauciflora (Stemonaceae)
Pentastemona egregia (Stemonaceae)
Triuris hyalina (Triuridaceae)
Barbacenia purpurea (Velloziaceae)
Vellozia prolifera (Velloziaceae)
Dioscorea communis (Dioscoreaceae)
Dioscorea melanophyma (Dioscoreaceae)
Dioscorea convolvulacea (Dioscoreaceae)
Trichopus zeylanicus (Dioscoreaceae)
Stenomeris cumingiana (Dioscoreaceae)
Burmannia madagascariensis (Burmanniaceae)
Thismia americana (Thismiaceae)
Afrothismia pachyantha (Thismiaceae)
Oxygyne triandra (Thismiaceae)
Narthecium ossifragum (Nartheciaceae)
Japonolirion osense (Petrosaviaceae)
Petrosavia stellaris (Petrosaviaceae)
Potamogeton pectinatus (Potamogetonaceae)
Althenia filiformis (Potamogetonaceae)
Zannichellia palustris (Potamogetonaceae)
Zostera marina (Zosteraceae)
Posidonia oceanica (Posidoniaceae)
Cymodocea nodosa (Cymodoceaceae)
Ruppia spiralis (Ruppiaceae)
Maundia triglochinoides (Juncaginaceae)
Triglochin maritimum (Juncaginaceae)
Lilaea scilloides (Juncaginaceae)
Aponogeton hexatepalus (Apotonogetonaceae)
Aponogeton proliferus (Apotonogetonaceae)
Aponogeton madagascariensus (Apotonogetonaceae)
Aponogeton distachyos (Apotonogetonaceae)
Scheuchzeria palustris (Scheuchzeriaceae)
Sagittaria platyphylla (Alismataceae)
Wiesneria triandra (Alismataceae)
Hydrocleys nymphoides (Limnocharitaceae)
Limnocharis flava (Limnocharitaceae)
Butomopsis latifolia (Limnocharitaceae)
Halophila ovalis (Hydrocharitaceae)
Thalassia testudinum (Hydrocharitaceae)
Vallisneria americana (Hydrocharitaceae)
Hydrilla verticillata (Hydrocharitaceae)
Najas marina (Hydrocharitaceae)
Egeria densa (Hydrocharitaceae)
Elodea nuttallii (Hydrocharitaceae)
Stratiotes aloides (Hydrocharitaceae)
Hydrocharis morsus-ranae (Hydrocharitaceae)
Limnobium spongia (Hydrocharitaceae)
Butomus umbellatus (Butomaceae)
Pleea tenuifolia (Tofieldiaceae)
Tofieldia pusilla (Tofieldiaceae)
Lemna minor (Araceae)
Cryptocoryne crispatulata (Araceae)
Pistia stratiotes (Araceae)
Pothos chinensis (Araceae)
Anthurium ramoncaracasii (Araceae)
Acorus calamus (Acoraceae)
Zingiberales
Commelinales
Dasypogonaceae
Poaceae
Arecaceae
Hosta japonica (Asparagaceae)
Liliales
Pandanales
Dioscoreaceae
Petrosaviales
Alismatales
Acorales
B
104
Fig. 4. (Continued)
H. CITERNE ET AL.
Author's personal copy
105THE EVOLUTION OF FLORAL SYMMETRY
bilateral symmetry does not occur exclusively in flowers produced by lateral
meristems. In eudicots, zygomorphic flowers are generally assembled in
racemose inflorescences. A rare exception is the cymose inflorescence of
the zygomorphic Capnoides sempervirens (Fumarioideae), even though
zygomorphy is more fluctuant in the terminal flower than in lateral flowers
(pers. obs.).
2. Floral Constraints on the Evolution of Symmetry
A previous study exploring the relationships between floral symmetry,
merism, number of stamens and presence of spurs in Ranunculales, the
earliest-diverging order in the eudicots, showed that zygomorphy evolved
three times independently and in very different architectural contexts in
this group (Damerval and Nadot, 2007). Another study conducted in the
large Asterid clade, where numerous transitions toward zygomorphy
have occurred (sometimes followed by reversals to actinomorphy) has
shown that zygomorphy is almost never associated with polyandry (i.e. a
number of stamens higher than twice the merism) in this derived eudicot
clade (Jabbour et al., 2008). This study highlights the fact that floral
symmetry may not evolve completely independently from other floral
features. In particular, it suggests that an increase in stamen number
could impede the dorsoventralization of the flower. A similar situation
was found in monocots (Fig. 4) in which only one co-occurrence of
polyandry (defined here as more than six stamens, six being twice the
most widespread type of merism in monocots) and zygomorphy is
observed, within the genus Aponogeton from the basal order Alismatales.
In Rosids, however, several co-occurrences of zygomorphy and polyan-
dry are recorded (Fig. 5). Among the 11 (at least) transitions toward
zygomorphy and the more than 25 transitions toward polyandry (defined
as over twice the merism) recorded in the phylogenetic tree of rosid
families, co-occurrences of both character states are observed five
times. They are found in Emblingiaceae (which produce dimerous flow-
ers with eight or nine stamens), in Begoniaceae, which have dimerous
disymmetric rather than truly zygomorphic flowers, in Resedaceae,
Cleomaceae (in which however, most zygomorphic genera have flowers
with few stamens) and in Chrysobalanaceae. Truly zygomorphic flowers
with numerous stamens are found only in Resedaceae and Chrysobala-
naceae, suggesting that the establishment of zygomorphy might be con-
strained in a polyandrous context, like in the Asterids. Furthermore, like
in the Asterids the presence of spurs (here a single spur) is conditioned
to zygomorphy (Fig. 5). The main difference lies in the fact that in
Author's personal copy
Type of perianth symmetry Number of stamens
Polysymmetry Twice merism or less
Monosymmetry More than twice merism
No perianth (polyandry)
Variable
*
*
*
*
*
*
*
*
*
A
106 H. CITERNE ET AL.
Fig. 5. (A) Mirror trees of Rosids showing the evolution of perianth symmetry and the
state of the androecium (number of stamens) relatively to the merism, optimized using
Maximum Parsimony. Left tree: optimization of perianth symmetry. Several colours on the
same branch denote ambiguity in the ancestral state. Right tree: optimization of the state of the
androecium (number of stamens). Several colours on the same branch denote ambiguity in the
ancestral state. Coloured lines refer to the orders of Rosids. Asterisks indicate taxa that produce
spurred flowers. The topology of the tree was established using information from the
Angiosperm Phylogeny website (http://www.mobot.org/MOBOT/research/APweb/). All
families are included and represent the terminal taxa of the tree. When zygomorphy is present
in addition to actinomorphy within a family, it concerns closely related taxa, therefore the
number of transitions at the family level is a good proxy for the actual number of transitions.
Botanical descriptions were obtained from the AP website, from eFloras (http://www.efloras.
org/), and from Delta (http://delta-intkey.com/angio/www/index.htm). (B) From left to right
and top to bottom: names of the terminal taxa (families) included in the tree. (See Color Insert.)
Author's personal copy
Celastraceae
Lepidobotryaceae
Huaceae
Oxalidaceae
Connaraceae
Brunelliaceae
Cephalotaxaceae
Elaeocarpaceae
Cunoniaceae
Linaceae
Irvingiaceae
Ixonanthaceae
Humiriaceae
Pandaceae
Ochnaceae
Hypericaceae
Podostemaceae
Calophyllaceae
Bonnetiaceae
Clusiaceae
Centroplacaceae
Malpighiaceae
Elatinaceae
Peraceae
Rafflesiaceae
Euphorbiaceae
Picrodendraceae
Phyllanthaceae
Balanopaceae
Chrysobalanaceae
Euphronaceae
Dichapetalaceae
Trigoniaceae
Caryocaraceae
Achariaceae
Goupiaceae
Lacistemataceae
Salicaceae
Violaceae
Passifloraceae
Putranjivaceae
Lophopyxidaceae
Ctenolophonceae
Erythroxylaceae
Rhizophoraceae
Fabaceae-Faboideae
Fabaceae-Mimosoideae
Fabaceae-Caesalpinioideae
Suraniaceae
Polygalaceae
Quillajaceae
Rosaceae
Rhamnaceae
Eleagnaceae
Dirachnaceae
Barbeyaceae
Ulmaceae
Cannabaceae
Moraceae
Urticaceae
Corynocarpaceae
Coriariaceae
Cucurbitaceae
Tetramelaceae
Begoniaceae
Datiscaceae
Anisophylleaceae
Nothofagaceae
Fagaceae
Myricaceae
Rhoipteleaceae
Juglandaceae
Ticodendraceae
Betulaceae
Casuarinaceae
Geraniaceae
Melianthaceae
Francoaceae
Ledocarpaceae
Vivianaceae
Combretaceae
Onagraceae
Lythraceae
Penaeaceae
Alzateaceae
Crypteroniaceae
Melastomataceae
Vochysiaceae
Myrtaceae
Stachyceraceae
Crossosomataceae
Guatemalaceae
Staphyleaceae
Geissolomataceae
Ixerbaceae
Strasburgeriaceae
Aphloiaceae
Picramniaceae
Nitrariaceae
Kirkiaceae
Burseraceae
Anacardiaceae
Simaroubaceae
Meliaceae
Rutaceae
Sapindaceae
Biebersteiniaceae
Gerrardinaceae
Tapisciaceae
Dipentodontaceae
Neuradaceae
Thymeleaceae
Sphaerosepalaceae
Bixaceae
Dipterocarpaceae
Sarcolaenaceae
Cistaceae
Cytinaceae
Muntingiaceae
Malvaceae
Akaniaceae
Tropaeolaceae
Moringaceae
Caricaceae
Setchellanthaceae
Limnanthaceae
Koeberliniaceae
Bataceae
Salvadoraceae
Emblingiaceae
Pentadiplandraceae
Gyrostemonaceae
Resedaceae
Tovariaceae
Capparaceae
Brassicaceae
Cleomaceae
Krameriaceae
Zygophyllaceae
Vitaceae
Peridiscaceae
Cercidiphyllaceae
Daphniphyllaceae
Hamamelidaceae
Altingiaceae
Paeoniaceae
Crassulaceae
Aphanopetalaceae
Tetracarpaceae
Penthoraceae
Haloragaceae
Iteaceae
Grossulariaceae
Saxifragaceae
Dilleniaceae
Gunneraceae
Myrothamnaceae
Celastrales
Oxalidales
Malpighiales
Fabales
Rosales
Cucurbitales
Fagales
Melianthales
Myrtales
Crossosomatales
Picramniales
Sapindales
Huerteales
Malvales
Brassicales
Zygophyllales
Vitales
Saxifragales
Dillenialese
Gunnerales B
107THE EVOLUTION OF FLORAL SYMMETRY
Fig. 5. (Continued)
Author's personal copy
108 H. CITERNE ET AL.
Rosids, unlike in Asterids, zygomorphy has evolved in a limited number
of families and does not characterize large clades (with the exception of
Faboideae (Fabaceae)). Polyandry has evolved frequently throughout the
group and represents a synapomorphy of the speciose subfamily Mimo-
soideae (Fabaceae) as well as of Rosaceae and of the genus Begonia
(Begoniaceae). One striking feature is that many families display varia-
tion in the number of stamens among genera. Rosids are mostly char-
acterized by corollas with free petals whereas Asterids have corollas with
fused petals. Could it be that the former allows more flexibility in floral
organ number than the latter?
Constraints in the evolution of morphological traits may stem from three
different sources that are not necessarily independent: physical, selective and
genetic. Our results suggest that inflorescence and floral architecture do not
influence the evolution of floral symmetry in the same way in all clades,
which invalidates a general role of physical constraints on the evolution of
zygomorphy per se. We focused on the possible evolutionary antagonism
between polyandry and zygomorphy in flowers. From a physical point of
view, it is possible to conceive that the spatial constraints exerted by numer-
ous stamen primordia on the floral meristem are strong at the beginning of
development, but can become relaxed as development proceeds, allowing for
late-onset zygomorphy. From an adaptive point of view, polyandry and
zygomorphy may be viewed as redundant for pollination efficiency. We
argue that polyandry emerging in a zygomorphic context (or the reverse)
may not be positively selected. Indeed, there are few examples of taxa
associating both traits. The unequal distribution of this association between
plant groups (near absent in Asterids but present in Rosids and Ranuncula-
ceae) could suggest variation in the genetic networks underlying both traits.
For instance, in Asterids, the antagonism of polyandry and zygomorphy
could be linked to the role of symmetry genes in inhibiting stamen develop-
ment (see Section VI). It would be of major interest to decipher the genetic
mechanisms involved in taxa where zygomorphy and polyandry co-occur,
such as in Resedaceae (Rosids) or in the Delphinieae (Ranunculales).
V. THE SIGNIFICANCE OF SYMMETRY IN
PLANT–POLLINATOR INTERACTIONS
In this section, we explore the ecological aspects of symmetry and its possible
adaptive value. For ease of comparison, we consider only the flower as the
study object, not lower- (bilabiate structures within flowers such as the
meranthia defined by Westerkamp and Classen-Bockhoff (2007)) or higher-
Author's personal copy
109THE EVOLUTION OF FLORAL SYMMETRY
order (flower-like inflorescences such as capitula of Asteraceae) structures.
We examine to what extent bilateral symmetry can be considered as one
among many mating strategies increasing gene flow and thus potentially
genetic diversity within species. For insects (as for other animal flower
visitors), flowers are potential energetic food sources. In this context, sym-
metry can be perceived as an indicator of the quality and/or quantity of
reward/food, even though floral mimicry may alter this potential relation-
ship (pollination deceit). The capacity of pollinators to perceive symmetry
and discriminate between different types lays the foundation for pollinator-
mediated selection of flower shape, which gives an insight into the potential
role of symmetry in plant population dynamics and species diversification.
A. ZYGOMORPHY AND OUTCROSSING STRATEGIES
Zygomorphy results in a polarized visual signal emitted by the flower, to
which participates the orientation of the symmetry axis. This axis is generally
vertically oriented, thus matching the symmetry plane of flying visitors in
approach. Some studies showed that flower orientation plays a role per se in
orienting the approach and landing behaviour of pollinators (Fenster et al.,
2009; Ushimaru and Hyodo, 2005; Ushimaru et al., 2009), and vertical
orientation has been suggested as being the first evolutionary step toward
the evolution of zygomorphy (Fenster et al., 2009). Morphological differ-
entiation further restricts pollinator access and movement within flowers,
often resulting in improved precision in pollen placement and subsequent
increase in cross-fertilization. Zygomorphy thus appeared as one of numer-
ous contrivances for decreasing selfing and its detrimental effects on
offsprings. In addition, precise pollen placement could form the basis for
reproductive isolation, and thus may promote species diversification.
1. Attributes of Zygomorphic Flowers Promoting Cross-Pollination
The visual signal emitted by zygomorphic flowers is generally borne by the
corolla, with its brilliant colours and polarized morphology. Consistently,
among 38 insect-pollinated Mediterranean species, zygomorphic ones allo-
cate significantly more biomass to the corolla than actinomorphic ones
(Herrera, 2009).
In order to ensure reproductive success, a balance must be achieved
between the amount of pollen deposited on visitors and especially pollina-
tors, and the amount actually transferred to the stigma of another flower.
This is all the more crucial when pollinators are pollen feeders. This is
achieved by adaptations aiming to limit pollen wastage (e.g. poricidal
Author's personal copy
110 H. CITERNE ET AL.
Fig. 6. Interaction between a solitary bee and a flower of Agapanthus africanus
(Amaryllidaceae). Due to the ventral position and curvature of the stamens, pollen
deposition is sternotribic. The style is longer than the filaments, so that the pollinator
comes into contact with the stigma before reaching the anthers. This arrangement favors
cross-pollination. Photograph: S. Nadot.
anthers in buzz-pollinated flowers, which is encountered in some bee-
pollinated species) and to increase precision in pollen placement on the
pollinator’s body (Fig. 6). In this context, zygomorphy of the perianth is
very often supplemented by various devices. For example, rewards—nectar
or oil, less often resins—may be more or less concealed or not easily
accessible, in nectar spur or flower throat. In Antirrhinum and Linaria,
for example, the lower lip is inflated and pressed against the upper lip
(“personate” flower), creating a physical obstacle in front of the nectaries.
Such flowers select for strong bees able to insert their head between the two
lips and open the corolla. Nectar guides are especially elaborate in zygo-
morphic flowers, participating in the internal symmetry, are often yellow—
possibly mimicking anther colour—and attractive to bees (Endress, 1994).
Bilabiate flowers of the lip and flag types (see Section II) are characterized by
contrasted placement of sexual organs. In both types, the lower part of the
flower serves as a landing platform for non-hovering pollinators. Stamens
and stigma are protected by the upper lip in lip-type flowers, and pollen
deposition on pollinators is usually nototribic (on the back). In flag flowers,
Author's personal copy
111THE EVOLUTION OF FLORAL SYMMETRY
stamens and style are enclosed in the lower part of the bilabiate flower,
and pollen deposition is sternotribic (on the ventral part of pollinators).
In addition, special mechanical devices can ensure pollen application,
powered by pollinators as they land on the flower (e.g. trigger system in
Medicago sativa) or as they move in during visitation (e.g. the motile stamens
of Salvia) to reach the reward.
2. Comparison of Zygomorphy with other Mating Strategies Promoting
Outcrossing
Mating strategies promoting cross-pollination include herkogamy (spatial
separation of sexual organs, including various types of stylar polymorph-
isms), dichogamy (temporal separation of male and female maturity,
i.e. protandry or protogyny), self-incompatibility systems, unisexual flowers,
borne on the same (monoecy) or different (dioecy) individuals, and various
combinations of both uni- and bisexual flowers (e.g. gynomonoecy,
gynodioecy). These systems coexist with zygomorphy to a variable extent.
Darwin (1877, cited in Barrett, 2010) considered heterostyly somewhat
functionally redundant with zygomorphy as morphological adaptations
promoting cross-pollination, which is consistent with the rare occurrence
of both characters simultaneously. Barrett et al. (2000) found distyly in a
rare species of the zygomorphic genus Salvia, possibly as a response to a new
environment where protandry was not sufficient to limit intrafloral mating.
In some zygomorphic species, differential spatial arrangements of reproduc-
tive parts have been observed, such as flexistyly (a reciprocal combination of
herko- and dichogamy) in Alpinia species (Zingiberaceae), inversostyly
(reciprocal vertical positioning of sexual organs) in Hemimeris species (Scro-
phulariaceae) or enantiostyly (Section II, and reviewed in Barrett, 2010). In
most enantiostylous species, style deflection is associated with a single polli-
nating anther in opposite direction to the style. This particular configuration
results in pollen deposited on the pollinator’s flank by one type of flower
coming into contact with the stigma of its mirror-image flower (Jesson and
Barrett, 2003). In addition, in some enantiostylous species, anther dimorph-
ism evolved, with the non-pollinating anthers specialized in pollinator feed-
ing. An association between zygomorphy and enantiostyly has been
observed in monocots (Jesson and Barrett, 2003).
Among the two forms of dichogamy, protogyny is common in wind-, bee-
and fly-pollinated flowers, while protandry is predominant in flowers polli-
nated by bees and butterflies (e.g. Endress, 2010). Consistently, an associa-
tion between protandry and zygomorphy has been observed in Asteridae
(Kalisz et al., 2006).
Author's personal copy
112 H. CITERNE ET AL.
B. POLLINATOR PREFERENCES AND THEIR PERCEPTION OF SYMMETRY
Insects constitute the most speciose group of extant plant pollinators, even
though pollination by specific groups of birds, bats and non-flying mammals
also occurs (Cronk and Ojeda, 2008; Endress, 1994; Fleming et al., 2009).
Symmetry as a visual cue may be recognized because of innate preferences or
learning abilities.
Insect were already diverse by the Permian (Whitfield and Kjer, 2008),
which means that their vision began to evolve well before the emergence of
angiosperms, and innate preferences or visual bias may have been recruited
to improve plant–insect relationship up to flower pollination. For instance,
Biesmeijer et al. (2005) established a parallel between floral guides (high
frequency of a dark centre, with radial stripes or dots), insectivorous pitchers
(dark centres, stripes and peripheral dots) and the appearance of the
entrance of the nest of stingless bees. They proposed that plants exploit the
perceptual bias of insects to attract them to specific displays such as flowers.
In tests with artificial flowers, many insect species belonging to Lepidop-
tera, Coleoptera, Hymenoptera and Diptera have been found to prefer the
largest and most symmetric flowers (Mo
¨ller, 2000; Mo
¨ller and Sorci, 1998;
Wignall et al., 2006). Preference for larger flowers is most probably related
to the low resolution of the composite insect eye (Chittka and Raine, 2006).
Bees as a whole constitute the most important group of pollinators with
about 20,000 species (Grimaldi and Engel, 2005), including insects with
different social behaviour (solitary or social), size and various adaptations
for nectar and pollen collection (e.g. Krenn et al., 2005; Thorp, 2000). Bees
have high learning abilities. They are able to discriminate bilateral and radial
symmetry from asymmetry. At a short distance, internal flower symmetry
marked, for instance, by nectar guides may reinforce symmetry perception
(Lehrer, 1999). Among bilaterally symmetrical patterns, bees prefer the
patterns with vertically oriented symmetry plane, and among radially sym-
metric patterns, the ones with radiating bars rather than concentric circles
(Giurfa et al., 1999). Preference for bilaterally symmetric shapes was demon-
strated to be innate in flower-naive bumblebees (Rodriguez et al., 2004). In
many other studies, it is not always clear whether discrimination is based on
innate preference or experience from natural conditions where particular
shapes may be linked to the availability of different rewards (Lehrer, 1999).
C. FLORAL SYMMETRY AND POLLINATION SYNDROMES
The concept of pollination syndrome has been widely debated since its
definition in the 19th century by Federico Delpino (Fenster et al., 2004;
Author's personal copy
113THE EVOLUTION OF FLORAL SYMMETRY
Ollerton et al., 2009; Tripp and Manos, 2008 and references therein). It
translates the observation that similar suites of flower traits can be found in
evolutionarily unrelated taxa as a result of convergent selection by the same
pollinating agent (Faegri and van der Pijl, 1966; Fenster et al., 2004; Proctor
et al., 1996). Functional groups of pollinators have been defined to account
for the observation that many species have flowers visited by large arrays of
pollinator species, and conversely some pollinators visit a large array of
species with different flower shapes. Analysing the Carlinville (Illinois)
flora, Fenster et al. (2004) found that 61% of 86 zygomorphic species were
pollinated by one functional group, significantly more than the 52% observed
among 192 actinomorphic species. The traditional bee pollination syndrome
includes a well-marked tridimensional form—more or less tubular flowers
and most commonly zygomorphic—yellow, blue or purple colour, and nectar
and pollen rewards (Faegri and van der Pijl, 1966; Proctor et al., 1996). This is
not to say that all zygomorphic flowers are bee-pollinated. Indeed, it is
believed the shape associated with bee pollination may have paved the way
for further diversification, for example, bird pollination consistently evolved
from bee pollination, and some bird-pollinated species have strongly
zygomorphic flowers (e.g. Lotus maculatusCronk and Ojeda, 2008).
D. VARIABILITY OF FLORAL TRAITS IN ZYGOMORPHIC AND
ACTINOMORPHIC SPECIES
Because of their specific interaction with a limited number of different
pollinators, it has been proposed that species with zygomorphic flowers
should experience stronger pollinator-mediated stabilizing selection for
flower shape and size than species with actinomorphic flowers (Berg, 1959;
Gong and Huang, 2009; Wolfe and Krstolic, 1999). Consistently, various
studies demonstrate lower variability in flower size in zygomorphic species
than in actinomorphic ones (Herrera et al., 2008; Ushimaru and Hyodo,
2005; van Kleunen et al., 2008; Wolfe and Krstolic, 1999).
While the type of symmetry is generally consubstantial with species defini-
tion, within-species variability around a main type exists, and has been
reported to be partly genetically controlled (Mo
¨ller and Shykoff, 1999).
Departure from perfect symmetry is generally measured as the difference
between the longest and the shortest petal in actinomorphic flowers, and
between the “right” and the “left” petal in zygomorphic ones (e.g. Mo
¨ller
and Eriksson, 1994). More integrative approaches have been attempted,
relying on geometric modelling of shape (Frey et al., 2007; Go
´mez et al.,
2006), which capture more spatial information.
Author's personal copy
114 H. CITERNE ET AL.
Small randomly directed deviations from perfect symmetry in natural
populations are defined as fluctuating asymmetry (Endress, 1999; Mo
¨ller,
2000; Rudall et al., 2002). Factors limiting such asymmetry are synorganiza-
tion and bilateral symmetry. Highly synorganized flowers such as those
encountered in orchids (zygomorphic—Rudall and Bateman, 2002) or 
Apocynaceae (actinomorphic) exhibit low fluctuating asymmetry (Endress,
1999). Low fluctuating asymmetry is also observed in zygomorphic species
compared to actinomorphic ones (Mo
¨ller, 2000), while leaf asymmetry
does not differ between the two categories of plants, suggesting that repro-
ductive traits are subject to differential selective pressures in the two groups,
in contrast to vegetative traits. However, zygomorphic flowers tend to be
larger than actinomorphic ones, and larger flowers generally exhibit less
fluctuating asymmetry than smaller ones; thus, it is difficult to separate the
actual effect of size and symmetry on the level of fluctuating asymmetry
(Mo
¨ller, 2000).
The capacity to better control random variation may be an indication
of “genotype quality,” and the most symmetrical flowers of some species
have been shown to be the richest in nectar (Mo
¨ller, 1995, 2000). In some
species, a low degree of asymmetry was associated with a better seed set
(Mo
¨ller, 2000 for review), but in other ones this association does not hold
(Botto-Mahan et al., 2004; Frey et al., 2005; Weeks and Frey, 2007). Flower
visitation and reproductive success can be affected by a large number of
uncontrolled causes, from environmental factors to biological ones, which
may explain the lack of consistency of these results.
In addition to the variability of individual traits, the level of floral inte-
gration measured by the correlations between the size of floral parts, is also
expected to be higher in zygomorphic than in actinomorphic species because
of the fit with pollinator morphology. Harder and Johnson (2009) found
such a trend in their compilation of 56 studies on 43 animal-pollinated
species.
An integrative view of corolla shape and symmetry has been obtained by
means of geometric morphometrics in the Brassicaceae species Erysimum
mediohispanicum (Go
´mez et al., 2006, 2008b). Shape variations are mainly
found in the width of the petals and their relative distribution, generating
symmetry ranging from actinomorphy to disymmetry and zygomorphy.
The first study, conducted over 2 years in a single population, demonstrates
that the main beetle pollinator preferentially visits disymmetric and zygo-
morphic corollas. In addition, the zygomorphic shape exhibits a higher
fitness, measured by seedling survival (Go
´mez et al., 2006). In a more
extensive study involving three different populations visited by a larger
diversity of pollinator assemblages, it was found that different pollinators
Author's personal copy
115THE EVOLUTION OF FLORAL SYMMETRY
preferred different flower shapes, and that between-population variability in
shape can be accounted for by preference of the major local pollinator.
Pollen and nectar production also varied significantly with corolla shape
(Go
´mez et al., 2008a). The most rewarding flowers matched the artificial
flower shape preferentially visited by bees, suggesting that bees use the visual
cue as an indicator of reward amount. Significant phenotypic selection on
flower shape was observed in all populations of this species (Go
´mez et al.,
2006, 2008b), thus giving an insight in the mechanisms of flower shape
evolution mediated by reward and driven by pollinator preference.
To summarize, zygomorphy results in tighter flower–pollinator interac-
tion than actinomorphy, and probably contributes to increased outcrossing
rates. Several lines of arguments thus support the hypothesis that zygomor-
phy is an adaptive trait that may have brought about species divergence and
species radiation in the past. However, extant populations generally exhibit
low diversity in floral symmetry, making it difficult to compare the selective
values of different types of symmetry.
VI. MOLECULAR BASES OF FLOWER SYMMETRY
A. THE FLORAL SYMMETRY GENE REGULATORY NETWORK IN
ANTIRRHINUM MAJUS
The molecular signals controlling floral symmetry were first described, and are
best understood, in A. majus (Veronicaceae, Lamiales). Wild-type A. majus
flowers have strongly differentiated organs along the dorsoventral axis parti-
cularly in the second and third whorls (petals and stamens). The two dorsal,
two lateral and single ventral petals differ in size, shape, epidermal cell type
and internal symmetry; in particular, the dorsal petal lobes are large and
asymmetric whereas the ventral petal lobe is smaller and bilaterally symme-
trical. The dorsal stamen is arrested to form a staminode, whereas the lateral
and ventral stamen pairs differ in filament length and pilosity. Unequal devel-
opment along the dorsoventral axis is apparent at the start of organogenesis,
with dorsal organs delayed in their initiation (Luo et al., 1996).
Two closely related genes CYCLOIDEA (CYC) and DICHOTOMA
(DICH) have been identified as master control genes for bilateral symmetry
by forward genetic screens (Luo et al., 1996, 1999). Cyc:dich double mutants
have completely radially symmetric flowers with all organs resembling the
ventral phenotype. Single cyc mutants have ventralized lateral organs and
dorsal organs with lateralized features, while dich mutants display altera-
tions of the internal symmetry of the dorsal petals. CYC and DICH are two
Author's personal copy
116 H. CITERNE ET AL.
closely related DNA-binding transcription factors belonging to the TCP
gene family (Cubas et al., 1999b; Luo et al., 1996, 1999). Both genes are
expressed in the dorsal region of the floral meristem throughout its devel-
opment (Luo et al., 1996, 1999). CYC and DICH expression is detectable
prior to organogenesis at the junction of the inflorescence and floral mer-
istem. After all organs are initiated, their expression is limited to the two
dorsal petals and staminode, with DICH having a more restricted expression
in the dorsal half of the dorsal petals (Luo et al., 1996, 1999). CYC, like other
members of the TCP gene family, is believed to affect development by
regulating patterns of cell growth and proliferation (reviewed in Cubas
et al., 2001; Martı
´n-Trillo and Cubas, 2009). In the dorsal staminode, CYC
expression correlates with the downregulation of cell cycle genes such as
HISTONE H4 and CYCLIN D3B (Gaudin et al., 2000). Although the initial
effect of CYC expression on the floral meristem is growth retardation, at
later stages of development its effect as a growth suppressor or promoter is
dependent on organ identity rather than positional cues (Clark and Coen,
2002; Coen and Meyerowitz, 1991; Luo et al., 1996).
CYC and DICH promote dorsal identity in A. majus flowers. By contrast,
ventral identity is controlled by DIVARICATA (DIV), a gene encoding
an MYB transcription factor with two imperfect repeats (R2R3) of the
DNA-binding MYB domain (Almeida et al., 1997; Galego and Almeida,
2002). In loss-of-function div mutants, the ventral region of the corolla
acquires lateral identity (Almeida et al., 1997). DIV is transcribed in all
floral organs early in development and is inhibited post-transcriptionally in
the dorsal and lateral regions through the expression of CYC and DICH
(Galego and Almeida, 2002). At later stages of development when ventral
petals become differentiated from lateral petals, DIV is strongly induced in
the inner layer of epidermal cells of the ventral and adjacent parts of the
lateral corolla lobes (Galego and Almeida, 2002). DIV promotes the expres-
sion of a MIXTA-like MYB gene AmMYBML1 required for the develop-
ment of ventral-specific petal epidermal cell types, in conjunction with
B-class MADS box genes (Perez-Rodriguez et al., 2005).
A gene regulatory network has been proposed for the control of floral
symmetry in A. majus (Costa et al., 2005). CYC is activated upon floral
induction; the molecular trigger is unknown but appears to be independent
of floral meristem identity genes, as CYC is also expressed in the adaxial
region of young axillary shoots adjacent to the inflorescence (Clark and
Coen, 2002). Asymmetric expression in axillary meristems suggests that
CYC responds to a positional cue or gradient within these meristems
(Clark and Coen, 2002). The persistent expression of CYC during floral
development is thought to be maintained by B- and C-function MADS
Author's personal copy
Floral
induction
CYC
DICH
RAD
RAD – independent
pathway
CYCLIN D3B
B-and C-function
MADS box genes
DIV
DIV
DIV AmMYBML1
B -function
MADS box genes
DIV
117THE EVOLUTION OF FLORAL SYMMETRY
proteins such as DEFICIENS and PLENA (Clark and Coen, 2002) as well
as self-positive feedback (Costa et al., 2005). One direct target of CYC and
DICH is RADIALIS (RAD), a single-repeat MYB transcription factor that
has TCP-binding sites in its promoter region and intron (Corley et al., 2005;
Costa et al., 2005). RAD is required to mediate most of the effects of CYC
and DICH; however, residual asymmetry is found in rad mutants suggesting
some effects of CYC are independent of RAD (Corley et al., 2005; Costa
et al., 2005). RAD is closely related to DIV, but has lost the C-terminal MYB
II domain (Corley et al., 2005). Although direct antagonism of RAD and
DIV remains to be demonstrated, this could operate by direct competition
for molecular targets (Corley et al., 2005). RAD is believed to act non-
autonomously on lateral organ development by inhibiting DIV (Corley
et al., 2005). This may occur by cell-to-cell movement of RAD proteins, or
alternatively by the activation of a downstream signalling molecule that
affects lateral development (Corley et al., 2005). The gene interactions
described above are summarized in Fig. 7.
Fig. 7. Major gene interactions regulating floral symmetry in Antirrhinum majus.
Gene transcription and proposed interactions are shown in the different regions (dorsal
(blue), lateral (green) and ventral (orange)) of the floral meristem. Arrows indicate
upregulation, lines terminated by a perpendicular line indicate repression, and dashed
lines for the repression of DIV by RAD in lateral regions represent putative RAD protein
movement or indirect interaction. (See Color Insert.)
Author's personal copy
118 H. CITERNE ET AL.
B. CYC-LIKE GENES ARE IMPLICATED IN THE CONTROL OF ZYGOMORPHY
IN DIVERSE LINEAGES
The extent to which these genes are implicated, and their interactions con-
served, in the elaboration of bilaterally symmetrical flowers has been exam-
ined in diverse groups of angiosperms (Fig. 8). Most studies have focused on
ASTERID
Asterales
Apiales
Dipsacales
Aquifoliales
Lamiales
Solanales
Gontianales
Garryales
Fabales
Rosales
Malpighiales
Myrtales
Brassicales
Malvales
Santalales
Caryophyllales
Saxifragales
Gunnerales
ROSID
d-CYC/DICH e-VmCYC1/VmCYC2
f,g,h-LegCYC1/LegCYC2 (LST1) f,g-LegCYC3 (KEW1)
k-IaTCP1
a,b,c–CYC2 (1-2)
i,j-CYC2B (1-2) i-CYC2A, j-CYC2A/CYC2B-3
Fig. 8. Summary of expression patterns of CYC-like genes (CYC2 clade) during late
developmental stages in the corolla of representative zygomorphic core eudicot species
(phylogeny derived from the Angiosperm Phylogeny website). Asterales: a. Gerbera hybrida
(Broholm et al., 2008), b. Senecio squalidus (Kim et al., 2008), c. Helianthus annuus (Chapman
et al., 2008); Lamiales: d. Antirrhinum majus (Luo et al., 1996, 1999), e. Veronica montana
(Preston et al., 2009); Fabales: f. Lotus japonicus (Feng et al., 2006), g. Pisum sativum (Wang
et al., 2008), h. Lupinus nanus (Citerne et al., 2006); Malpighiales: i.Byrsonima crassifolia,
j. Janusia guaranitica (Zhang et al., 2010); Brassicales: k. Iberis amara (Busch and Zachgo,
2007). Although the predominant expression domain is dorsal (and lateral), ventral expression
is found in Asterales. Expression is also detected on the abaxial side in I. amara but is weaker
(in yellow) than on the dorsal side (orange). The effect on petal growth and development
(acting as growth promoter or suppressor) varies across species. (See Color Insert.)
Author's personal copy
119THE EVOLUTION OF FLORAL SYMMETRY
homologues of CYC/DICH. The Lamiales have evolved zygomorphic flow-
ers from an ancestor with actinomorphic flowers (Coen and Nugent, 1994;
Donoghue et al., 1998; Endress, 2001b), and it is therefore unsurprising that
CYC-like genes are implicated in the control of bilateral symmetry in other
members of this clade. In particular, the persistent expression on the dorsal
side of the developing flower of CYC homologues has been described in
other zygomorphic species of Veronicaceae (Cubas et al., 1999a; Hileman
et al., 2003; Preston et al., 2009) and Gesneriaceae (Du and Wang, 2008; Gao
et al., 2008; Song et al., 2009; Zhou et al., 2008). Notably, variations in the
pattern of stamen development and the degree of petal differentiation along
the dorsoventral axis have frequently been associated with modifications of
CYC-like gene expression. For example, in Mohavea confertiflora (Veroni-
caceae), the abortion of both dorsal and lateral stamens coincides with an
expansion of the expression domain of CYC and DICH homologues from
the dorsal region to the lateral stamen primordia (Hileman et al., 2003).
Similarly, in Chirita heterotricha (Gesneriaceae), an expanded expression
domain (i.e. in both dorsal and lateral regions of the flower) of one CYC
homologue coincides with the abortion of dorsal and lateral stamens (Gao
et al., 2008). In the Lamiales, however, stamen abortion per se is not
necessarily associated with CYC expression, particularly on the ventral
side (Preston et al., 2009; but see Song et al., 2009).
CYC-like genes have been recruited for the control of floral symmetry in
families that have evolved zygomorphy independently of the Lamiales.
Within Rosids, these have been implicated in the control of dorsal (and
sometimes lateral) petal identity in Fabaceae, Brassicaceae and Malpighia-
ceae (Busch and Zachgo, 2007; Feng et al., 2006; Wang et al., 2008; Zhang
et al., 2010). In Papilionoideae (Fabaceae), two closely related CYC-like
genes are expressed in the dorsal region of developing flowers (Citerne
et al., 2006; Feng et al., 2006; Wang et al., 2008); one of these, LOBED
STANDARD 1 (LST1), is an important determinant of dorsal petal identity,
promoting cellular proliferation and epidermal cell differentiation (Feng
et al., 2006; Wang et al., 2008). The other copy appears to have less effect
on phenotype, but may act redundantly to control dorsal petal development
(Wang et al., 2008). A third CYC homologue expressed in the dorsal and
lateral regions of the developing flower, KEELED WINGS 1 (KEW1), is also
a regulator of dorsoventral asymmetry, and determines lateral petal identity
(Feng et al., 2006; Wang et al., 2008). The petals of lst1:kew1 double mutants
have ventral identity in both L. japonicus and Pisum sativum (Feng et al.,
2006; Wang et al., 2008).
Similar expression is found in duplicate CYC-like genes in zygomorphic
Malpighiaceae (Zhang et al., 2010). As in Fabaceae, paralogues exhibit
Author's personal copy
120 H. CITERNE ET AL.
either dorsal or dorsolateral expression late in floral development, a pattern
that is not found in their closest relatives with actinomorphic flowers. Gene
duplication, and consequently functional divergence, has occurred indepen-
dently in Fabaceae and Malpighiaceae (Citerne et al., 2003; Zhang et al.,
2010), and the extent of functional redundancy and specificity remains to be
demonstrated in Malpighiaceae.
Within Brassicaceae, I. amara has been a case study for the control of
late-onset zygomorphy (Busch and Zachgo, 2007). I. amara flowers are
tetramerous with two reduced dorsal petals and two enlarged ventral petals.
A shift occurs during flower development: petals are initiated simultaneously
and grow equally until relatively late in development when, at the onset of
stamen differentiation, unequal adaxial–abaxial petal growth becomes
apparent. A shift is also observed in the expression of the homologue of
CYC in I. amara IaTCP1, which is expressed equally early in development
but becomes strongly expressed in the two dorsal petals relative to the
ventral petals at later developmental stages (Busch and Zachgo, 2007). The
effect of IaTCP1 decreases petal growth and is the opposite of what is
observed in Antirrhinum and Fabaceae (i.e. promoter of petal growth during
late developmental stages), indicative of functional divergence. Constitutive
expression of IaTCP1 in Arabidopsis produces a similar phenotype to when
the endogenous gene TCP1 is constitutively expressed, that is, repressed cell
division reducing vegetative and petal growth, suggesting that DNA targets
and interacting proteins are conserved in Brassicaceae (Busch and Zachgo,
2007). By contrast, the effect on petal growth of heterologous expression of
Antirrhinum CYC in Arabidopsis is enlargement by cell expansion suggesting
that targets and interacting proteins are not conserved between Antirrhinum
and Brassicaceae (Busch and Zachgo, 2007; Costa et al., 2005).
In Asteraceae (Asterid clade like Lamiales), CYC-like genes also regulate
dorsoventral asymmetry but in a novel manner, as a ventralizing factor
(Broholm et al., 2008; Kim et al., 2008). In radiate inflorescences, both
actinomorphic (disc) and zygomorphic (ray) flowers are present: the outer-
most flowers develop enlarged fused petal lobes on the ventral side (the
ligule), and have aborted stamens. Expression of a subset of CYC-like
genes was found predominantly in ray flowers (Broholm et al., 2008; Chap-
man et al., 2008; Kim et al., 2008), in particular on the ventral side promoting
ligule development (Broholm et al., 2008). In Gerbera hybrida, the effects of
constitutive expression of GhCYC2 differ not only with organ type (increas-
ing growth of petals and reducing growth of stamens) but also according to
flower type and position along the capitulum radius (Broholm et al., 2008).
There is less evidence for the involvement of CYC-like genes in the control
of zygomorphy outside the core eudicots. In rice, RETARDED PALEA1
Author's personal copy
121THE EVOLUTION OF FLORAL SYMMETRY
(REP1) promotes the differentiation of the palea and the lemma (which
together function as a calyx surrounding the stamens and carpel) by regulat-
ing cellular expansion and differentiation (Yuan et al., 2009). In Fumarioi-
deae (Papaveraceae), bilaterally symmetric flowers are characterized by the
development of a nectar spur in one of the two outer petals. The asymmetric
expression of one CYC-like gene in the spurred petal of C. sempervirens
could indicate a role in floral zygomorphy but remains to be demonstrated
functionally (Damerval et al., 2007).
C. GENETIC MECHANISMS UNDERLYING CHANGES IN FLORAL SYMMETRY
Modification of key development regulators appears to underlie morpholo-
gical evolution (e.g. Doebley and Lukens, 1998; Wilson et al., 1977; Rosin
and Kramer, 2009). Changes in the timing, duration and localization of
CYC-like gene expression have repeatedly been implicated in changes in
floral symmetry. Case studies have provided examples of different muta-
tional mechanisms. In L. vulgaris, naturally occurring radially symmetrical
mutants have lost CYC expression through extensive methylation of pro-
moter and ORF (Cubas et al., 1999a). Surveys of epigenetic alteration of
gene expression in plants suggest this mode of regulation may play a role in
morphological evolution (Kalisz and Purrugannan, 2004; Rapp and Wendel,
2005); however, no other example has been described so far in the context of
floral symmetry.
In Senecio, interspecific hybridization has been shown to have played a
part in the evolution of a floral symmetry polymorphism (Kim et al.,
2008). In Senecio vulgaris, a species with typically non-radiate inflores-
cences bearing only disc florets, a radiate form has evolved by introgres-
sion of an allele at the RAY locus from Senecio squalidus with radiate
inflorescences. The RAY locus consists of two CYC2 paralogues, and as in
Gerbera, one of these genes appears to promote ventral identity in ray
florets. These genes are specifically expressed in the outer florets, and are
differentially expressed in the two forms. It is believed that changes in cis-
regulatory regions, rather than the ORF, may underlie the differences
between the two morphs.
There are numerous cases of species derived from zygomorphic lineages
that have evolved actinomorphic flowers secondarily. Diverse types of
changes in CYC-like gene expression have been described. In Plantago
lanceolata (Veronicaceae), a wind-pollinated genus with radial tetramerous
flowers, expression of the CYC-homologue PlCYC is detected in flowers
only at later stages of development in all four stamens (in the anther con-
nective and stamen filament) and transiently in the ovaries (Reardon et al.,
Author's personal copy
122 H. CITERNE ET AL.
2009). The actinomorphy in P. lanceolata is therefore correlated with a lack
of both early expression and asymmetric expression in petals. The function
of PlCYC is unknown, but has been proposed to delay stamen development
and therefore promote dichogamy. Unlike other members of Veronicaceae
(Preston et al., 2009), P. lanceolata has only one CYC-like gene, which could
suggest a functionally significant gene-loss event (Reardon et al., 2009).
In Bournea leiophylla (Gesneriaceae), the transition from a zygomorphic
pattern in the early stages of floral development to actinomorphy at anthesis
correlates with the downregulation of the dorsal expression of a CYC-like
and a RAD-like gene (Zhou et al., 2008). By contrast, in Cadia purpurea
(Fabaceae), the derived radial symmetry of the corolla coincides with an
expansion of the expression domain of one CYC-like gene to all petals
(Citerne et al., 2006). It remains to be determined whether these heterochro-
nic and heterotopic changes in gene expression are caused by modifications
in their cis-regulatory regions or in the function or nature of their trans-
acting regulators.
D. EVOLUTION OF CYC-LIKE GENES: FUNCTIONAL IMPLICATIONS
It is believed that morphological evolution proceeds by tinkering of existing
genetic pathways (Jacob, 1977). What is the context of CYC-like gene
evolution that makes them a common player in the repeated evolution of
floral zygomorphy in many lineages? Members of the TCP gene family are
transcription factors that bind to DNA through their characteristic basic
helix–loop–helix domain (bHLH) (Martı
´n-Trillo and Cubas, 2009). CYC
together with its homologue in maize TEOSINTE BRANCHED 1 (TB1)
belong to a clade of class II TCP genes (the ECE clade), whose members are
generally characterized by a second short conserved hydrophilic domain (R
domain) and a conserved motif of amino acids termed “ECE”. Character-
ized genes in this clade appear to have a predominant role in growth repres-
sion (Martı
´n-Trillo and Cubas, 2009). TB1 is a suppressor of axillary
meristem growth (Doebley et al., 1997), but also affects floral development
by suppressing stamen growth in female flowers (Hubbard et al., 2002).
Two major duplication events have occurred in the ECE clade, prior to the
divergence of the core eudicots (Howarth and Donoghue, 2006). All genes
implicated so far in dorsoventral asymmetry of flowers belong to the same
CYC2 clade (Howarth and Donoghue, 2006), whereas genes from the CYC1
and CYC3 clade in Arabidopsis appear to have a role like TB1 in the
development of axillary buds (Aguilar-Martı
´nez et al., 2007; Finlayson,
2007). This could reflect sub/neofunctionalization of major ECE-CYC
lineages in the core eudicots, where the effects on floral development such
Author's personal copy
123THE EVOLUTION OF FLORAL SYMMETRY
as stamen suppression of the CYC/TB1 ancestor were retained and subse-
quently modified in the CYC2 clade.
The dorsal expression of many CYC2 genes is believed to be shared by the
common ancestor of Rosids and Asterids (Cubas et al., 2001). In Arabidopsis
thaliana (Brassicaceae), which has radially symmetrical flowers, the homo-
logue of CYC TCP1, is transiently expressed in the dorsal region of the floral
meristem prior to organogenesis (Cubas et al., 2001). Modification of this
incipient asymmetry through its persistent expression during organ primor-
dia development could account for the repeated evolution of zygomorphy
(Cubas et al., 2001). However, evidence of ventral and radial expression of
CYC2 genes in different lineages suggests lability in the response to local
signals along the dorsoventral axis in the floral meristem. For example, early
expression of IaTCP1 in I. amara is very weak and ubiquitous (Busch and
Zachgo, 2007), and differs from that of Arabidopsis TCP1, which is transi-
ently expressed on the dorsal side of the floral meristem. Without expression
data from other Brassicaceae, it is not clear whether the early asymmetric
pattern is ancestral or derived. Similarly in Malpighiales, the actinomorphic
relatives of the zygomorphic members of family Malpighiaceae (which have
“typical” CYC dorsal expression) differ in their expression of CYC-like
genes; in the closest relative these are expressed uniformly in late-stage
flowers, whereas in the next closest relative no CYC expression is detected
at this stage (Zhang et al., 2010). The role of CYC2 genes in petal develop-
ment also appears to be labile, probably reflecting differences in their inter-
action with other proteins. In different lineages, these genes can either
promote or repress growth through cell proliferation and/or expansion,
and are often associated with cellular differentiation.
Independent duplication of CYC2 genes appears to be a common phe-
nomenon in core eudicots, for example, in Veronicaceae (Preston et al.,
2009), Gesneriaceae (Citerne et al., 2000; Smith et al., 2004, 2006),
Asteraceae (Broholm et al., 2008; Chapman et al., 2008), Dipsacales
(Howarth and Donoghue, 2005), Fabaceae (Citerne et al., 2003; Fukuda
et al., 2003) and Malpighiales (Zhang et al., 2010). Correlation between
floral form and copy number has been postulated in Dipsacales but the
significance of duplications specific to zygomorphic lineages remains to