Access to this full-text is provided by IUCr.
Content available from Acta Crystallographica Section E: Crystallographic Communications
This content is subject to copyright.
n-Butyldichlorido{4-cyclohexyl-1-[1-
(pyridin-2-yl-jN)ethylidene]thiosemi-
carbazidato-j
2
N
1
,S}tin(IV)
Md. Abu Affan,
a
Md. Abdus Salam,
a
Mohd Razip
Asaruddin,
a
Seik Weng Ng
b,c
and Edward R. T. Tiekink
b
*
a
Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300
Kota Samaharan, Sawarak, Malaysia,
b
Department of Chemistry, University of
Malaya, 50603 Kuala Lumpur, Malaysia, and
c
Chemistry Department, Faculty of
Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: Edward.Tiekink@gmail.com
Received 5 June 2012; accepted 7 June 2012
Key indicators: single-crystal X-ray study; T= 100 K; mean (C–C) = 0.005 A
˚;
Rfactor = 0.035; wR factor = 0.085; data-to-parameter ratio = 20.9.
Two independent molecules comprise the asymmetric unit in
the title compound, [Sn(C
4
H
9
)(C
14
H
19
N
4
S)Cl
2
]. In each mol-
ecule, the Sn
IV
atom exists within a distorted octahedral
geometry defined by the N,N0,S-tridentate mono-deproto-
nated Schiff base ligand, two mutually trans Cl atoms, and the
-C atom of the n-butyl group; the latter is trans to the azo-N
atom. The greatest distortion from the ideal geometry is found
in the nominally trans angle formed by the S and pyridyl-N
atoms at Sn [151.72 (7) and 152.04 (7), respectively]. In the
crystal, molecules are consolidated into a three-dimensional
architecture by a combination of N—HCl, C—Hand
–interactions [inter-centroid distances = 3.6718 (19) and
3.675 (2) A
˚].
Related literature
For the structures of the methyltin and phenyltin derivatives,
see: Salam et al. (2010a,b).
Experimental
Crystal data
[Sn(C
4
H
9
)(C
14
H
19
N
4
S)Cl
2
]
M
r
= 522.09
Monoclinic, P21=n
a= 12.1229 (3) A
˚
b= 15.4518 (4) A
˚
c= 23.6868 (6) A
˚
= 103.894 (3)
V= 4307.21 (19) A
˚
3
Z=8
Mo Kradiation
= 1.54 mm
1
T= 100 K
0.25 0.25 0.25 mm
Data collection
Agilent SuperNova Dual
diffractometer with Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
T
min
= 0.794, T
max
= 1.000
18205 measured reflections
9861 independent reflections
8503 reflections with I>2(I)
R
int
= 0.024
Refinement
R[F
2
>2(F
2
)] = 0.035
wR(F
2
) = 0.085
S= 1.04
9860 reflections
471 parameters
H-atom parameters constrained
max
= 1.64 e A
˚
3
min
=1.11 e A
˚
3
Table 1
Selected bond lengths (A
˚).
Sn1—C1 2.187 (3)
Sn1—N1 2.269 (2)
Sn1—N2 2.209 (2)
Sn1—S1 2.4785 (8)
Sn1—Cl1 2.5123 (8)
Sn1—Cl2 2.4959 (8)
Sn2—C19 2.182 (3)
Sn2—N5 2.255 (3)
Sn2—N6 2.215 (3)
Sn2—S2 2.4806 (8)
Sn2—Cl3 2.4959 (8)
Sn2—Cl4 2.5124 (8)
Table 2
Hydrogen-bond geometry (A
˚,).
Cg1 is the centroid of the N1,C5–C9 ring.
D—HAD—H HADAD—HA
N4—H4Cl3 0.88 2.65 3.516 (3) 167
C15—H15ACg1
i
0.99 2.85 3.692 (4) 143
Symmetry code: (i) xþ1;yþ1;zþ1.
Data collection: CrysAlis PRO (Agilent, 2012); cell refinement:
CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to
solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to
refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics:
ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and
DIAMOND (Brandenburg, 2006); software used to prepare material
for publication: publCIF (Westrip, 2010).
This work was supported financially by the Ministry of
Science Technology and Innovation (MOSTI) under research
grant No. 06–01-09-SF0046. The authors would like to thank
Universiti Malaysia Sarawak (UNIMAS) for the facilities to
carry out the research work. They also thank the Ministry of
Higher Education (Malaysia) for funding structural studies
through the High-Impact Research scheme (UM.C/HIR/
MOHE/SC/12).
metal-organic compounds
Acta Cryst. (2012). E68, m909–m910 doi:10.1107/S1600536812025937 Affan et al. m909
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: QM2072).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model.19, 557–559.
Salam, M. A., Affan, M. A., Ahmad, F. B., Tahir, M. I. M. & Tiekink, E. R. T.
(2010a). Acta Cryst. E66, m1503–m1504.
Salam, M. A., Affan, M. A., Shamsuddin, M. & Ng, S. W. (2010b). Acta Cryst.
E66, m570.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
metal-organic compounds
m910 Affan et al. [Sn(C
4
H
9
)(C
14
H
19
N
4
S)Cl
2
]Acta Cryst. (2012). E68, m909–m910
supporting information
sup-1
Acta Crys t. (2012). E68, m909–m910
supporting information
Acta Cryst. (2012). E68, m909–m910 [https://doi.org/10.1107/S1600536812025937]
n-Butyldichlorido{4-cyclohexyl-1-[1-(pyridin-2-yl-κN)ethylidene]thio-
semicarbazidato-κ2N1,S}tin(IV)
Md. Abu Affan, Md. Abdus Salam, Mohd Razip Asaruddin, Seik Weng Ng and Edward R. T.
Tiekink
S1. Comment
Previous structural studies have described the methyltin (Salam et al., 2010a) and phenyltin (Salam et al., 2010b)
derivatives of the title compound. The molecular structure of the title compound, (I), resembles these.
There are two independent molecules in the asymmetric unit of (I), Fig. 1. These differ in terms of the relative
dispositions of the n-butyl and cycohexyl rings, Fig. 2. The Sn atom in each molecule exists within a six atom CCl2N2S
donor set defined by the tridentate mono-deprotonated Schiff base ligand, two mutually trans chlorido atoms, and the α-C
atom of the Sn-bound n-butyl group which is trans to the azo-N atom, Table 1. Distortions from the ideal octahedral
geometry are ascribed primarily to the restricted bite distances formed by the Schiff base which results in an angle of
151.72 (7) ° [152.04 (7)° for the second molecule] for the nominally trans S—Sn—N angle.
The molecules are consolidated into a three-dimensional architecture by a combination of N—H···Cl and C—H···π,
Table 1, as well as π—π interactions, the latter occurring between centrosymmetrically related pairs of (N1,C5–C9) and
(N5,C23–C27) rings [inter-centroid distances = 3.6718 (19) and 3.675 (2) Å for symmetry operations: 2 - x, 1 - y, 1 - z
and -x, 1 - y, -z, respectively], Fig. 3 and Table 2.
S2. Experimental
2-Acetylpyridine-N(4)-cyclohexylthiosemicarbazone (0.28 g, 1.0 mmol) was dissolved in absolute methanol (10 ml) in a
Schlenk round bottom flask under a nitrogen atmosphere. Then, a 10 ml me thanolic solution of butyltin(IV) trichloride
(0.282 g, 1.0 mmol) was added drop-wise while stirring which resulted in the formation of a yellow solution. The
reaction mixture was refluxed for 4 h and then cooled to room temperature. The yellow microcrystals that formed were
filtered off, washed with a small amount of cold methanol and dried in vacuo over silica gel. Yellow crystals suitable for
X-ray diffraction were obtained from the slow evaporation of a chloroform/methanol (1:1 ratio) solution at room
temperature. Yield: 0.438 g, 78%: M.pt: 521–523 K: FT—IR (KBr, cm-1) νmax: 3308 (s, NH), 2931, 2855 (s, cyclohexyl),
1602 (m, C═N—N═C), 1020 (w, N—N), 1345, 833 (m, C—S), 652 (w, pyridine in plane), 570 (w, Sn—C), 475 (w, Sn—
N). Anal. Calc. for C18H28Cl2N4SSn: C, 41.40; H, 5.40; N, 10.73%. Found: C, 41.24; H, 5.17; N, 10.59%.
S3. Refinement
Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were
included in the refinement in the riding model approximation. The amino H-atoms were similarly treated [N–H 0.88 Å;
Uiso(H) 1.2Ueq(N)]. The (0 1 2) reflection was omitted from the final refinement as it was affected by the beam-stop. The
maximum and minimum residual electron density peaks of 1.64 and 1.11 e Å-3, respectively, were located 0.73 Å and
0.74 Å from the Sn1 and Sn2 atoms, respectively.
supporting information
sup-2
Acta Crys t. (2012). E68, m909–m910
Figure 1
The molecular structures of the two independent molecules of (I) showing the atom-labelling scheme and displacement
ellipsoids at the 50% probability level.
supporting information
sup-3
Acta Crys t. (2012). E68, m909–m910
Figure 2
Superimposition of the two independent molecules in (I). The S,N-chelate rings have been superimposed, and the Sn1 and
and Sn2-containing molecules are shown as red and blue images, respectively.
supporting information
sup-4
Acta Crys t. (2012). E68, m909–m910
Figure 3
A view in projection down the a axis of the unit-cell contents for (I). The N—H···Cl, C—H···π and π—π interactions are
shown as orange, purple and brown dashed lines, respectively.
n-Butyldichlorido{4-cyclohexyl-1-[1-(pyridin-2-yl- κN)ethylidene]thiosemicarbazidato-κ2N1,S}tin(IV)
Crystal data
[Sn(C4H9)(C14H19N4S)Cl2]
Mr = 522.09
Monoclinic, P21/n
Hall symbol: -P 2yn
a = 12.1229 (3) Å
b = 15.4518 (4) Å
c = 23.6868 (6) Å
β = 103.894 (3)°
V = 4307.21 (19) Å3
Z = 8
F(000) = 2112
Dx = 1.610 Mg m−3
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 10393 reflections
θ = 2.2–27.5°
µ = 1.54 mm−1
T = 100 K
Block, dark-yellow
0.25 × 0.25 × 0.25 mm
Data collection
Agilent SuperNova Dual
diffractometer with Atlas detector
Radiation source: SuperNova (Mo) X-ray
Source
Mirror monochromator
Detector resolution: 10.4041 pixels mm-1
ω scan
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
Tmin = 0.794, Tmax = 1.000
18205 measured reflections
9861 independent reflections
supporting information
sup-5
Acta Crys t. (2012). E68, m909–m910
8503 reflections with I > 2σ(I)
Rint = 0.024
θmax = 27.6°, θmin = 2.2°
h = −15→11
k = −14→19
l = −21→30
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.035
wR(F2) = 0.085
S = 1.04
9860 reflections
471 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0351P)2 + 4.9209P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.001
Δρmax = 1.64 e Å−3
Δρmin = −1.11 e Å−3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzU
iso*/Ueq
Sn1 0.671827 (17) 0.387870 (13) 0.373102 (9) 0.01486 (6)
Sn2 0.329033 (17) 0.631862 (13) 0.111105 (9) 0.01785 (6)
Cl1 0.79254 (6) 0.48374 (5) 0.32677 (3) 0.02156 (16)
Cl2 0.56865 (7) 0.31624 (6) 0.43974 (4) 0.03090 (19)
Cl3 0.23119 (6) 0.53083 (5) 0.16539 (3) 0.02212 (16)
Cl4 0.40300 (7) 0.71030 (5) 0.03486 (4) 0.02837 (19)
S1 0.49840 (7) 0.42958 (5) 0.29902 (3) 0.02126 (17)
S2 0.51623 (7) 0.61085 (5) 0.18026 (4) 0.02298 (17)
N1 0.8063 (2) 0.41305 (16) 0.45630 (11) 0.0172 (5)
N2 0.6262 (2) 0.50862 (16) 0.41198 (11) 0.0168 (5)
N3 0.5324 (2) 0.55449 (16) 0.38600 (11) 0.0193 (5)
N4 0.3817 (2) 0.57067 (17) 0.30944 (12) 0.0203 (6)
H4 0.3393 0.5528 0.2759 0.024*
N5 0.1915 (2) 0.59176 (17) 0.03328 (11) 0.0197 (6)
N6 0.3911 (2) 0.51522 (16) 0.07398 (11) 0.0187 (5)
N7 0.4932 (2) 0.47828 (17) 0.09891 (11) 0.0199 (6)
N8 0.6517 (2) 0.48053 (17) 0.17334 (12) 0.0210 (6)
H8 0.6922 0.5051 0.2051 0.025*
C1 0.7438 (3) 0.27114 (19) 0.34395 (13) 0.0203 (7)
H1A 0.7346 0.2748 0.3013 0.024*
H1B 0.8263 0.2696 0.3622 0.024*
C2 0.6913 (4) 0.1875 (3) 0.35779 (19) 0.0419 (10)
H2A 0.6899 0.1882 0.3994 0.050*
H2B 0.7410 0.1391 0.3521 0.050*
C3 0.5712 (4) 0.1691 (3) 0.3220 (2) 0.0464 (10)
H3A 0.5385 0.1208 0.3401 0.056*
H3B 0.5233 0.2209 0.3224 0.056*
C4 0.5687 (4) 0.1462 (3) 0.2607 (2) 0.0563 (13)
H4A 0.4902 0.1346 0.2395 0.084*
H4B 0.6152 0.0945 0.2600 0.084*
H4C 0.5991 0.1944 0.2422 0.084*
supporting information
sup-6
Acta Crys t. (2012). E68, m909–m910
C5 0.8962 (3) 0.3615 (2) 0.47722 (15) 0.0233 (7)
H5 0.9074 0.3121 0.4554 0.028*
C6 0.9726 (3) 0.3781 (2) 0.52955 (15) 0.0281 (8)
H6 1.0352 0.3405 0.5436 0.034*
C7 0.9569 (3) 0.4498 (3) 0.56083 (15) 0.0299 (8)
H7 1.0086 0.4624 0.5969 0.036*
C8 0.8641 (3) 0.5040 (2) 0.53929 (14) 0.0259 (7)
H8A 0.8521 0.5540 0.5604 0.031*
C9 0.7897 (2) 0.4837 (2) 0.48645 (13) 0.0195 (6)
C10 0.6895 (3) 0.5371 (2) 0.46050 (14) 0.0204 (6)
C11 0.6633 (3) 0.6176 (2) 0.48942 (17) 0.0341 (9)
H11A 0.6054 0.6510 0.4621 0.051*
H11B 0.7325 0.6524 0.5017 0.051*
H11C 0.6348 0.6024 0.5235 0.051*
C12 0.4730 (3) 0.5236 (2) 0.33567 (14) 0.0194 (6)
C13 0.3504 (3) 0.65124 (19) 0.33522 (13) 0.0184 (6)
H13 0.4217 0.6840 0.3525 0.022*
C14 0.2903 (3) 0.6323 (2) 0.38348 (15) 0.0235 (7)
H14A 0.3404 0.5971 0.4141 0.028*
H14B 0.2201 0.5989 0.3676 0.028*
C15 0.2607 (3) 0.7172 (2) 0.40959 (16) 0.0299 (8)
H15A 0.2189 0.7045 0.4398 0.036*
H15B 0.3315 0.7481 0.4284 0.036*
C16 0.1885 (3) 0.7743 (2) 0.36318 (18) 0.0366 (9)
H16A 0.1747 0.8302 0.3807 0.044*
H16B 0.1140 0.7461 0.3477 0.044*
C17 0.2450 (4) 0.7909 (2) 0.31372 (17) 0.0398 (10)
H17A 0.3141 0.8262 0.3281 0.048*
H17B 0.1925 0.8242 0.2829 0.048*
C18 0.2775 (3) 0.7063 (2) 0.28791 (15) 0.0305 (8)
H18A 0.2078 0.6740 0.2690 0.037*
H18B 0.3197 0.7195 0.2580 0.037*
C19 0.2561 (3) 0.75131 (18) 0.13533 (13) 0.0159 (6)
H19A 0.2061 0.7781 0.1005 0.019*
H19B 0.2100 0.7386 0.1636 0.019*
C20 0.3533 (3) 0.8137 (2) 0.16256 (16) 0.0300 (8)
H20A 0.4028 0.7866 0.1974 0.036*
H20B 0.3999 0.8253 0.1343 0.036*
C21 0.3060 (3) 0.8991 (2) 0.17965 (16) 0.0300 (8)
H21A 0.2638 0.9291 0.1441 0.036*
H21B 0.2519 0.8866 0.2040 0.036*
C22 0.3993 (3) 0.9581 (2) 0.21298 (17) 0.0344 (8)
H22A 0.3655 1.0118 0.2232 0.052*
H22B 0.4520 0.9717 0.1887 0.052*
H22C 0.4405 0.9290 0.2486 0.052*
C23 0.0914 (3) 0.6321 (2) 0.01451 (15) 0.0251 (7)
H23 0.0738 0.6799 0.0360 0.030*
C24 0.0132 (3) 0.6060 (2) −0.03525 (16) 0.0277 (8)
supporting information
sup-7
Acta Crys t. (2012). E68, m909–m910
H24 −0.0574 0.6352 −0.0476 0.033*
C25 0.0392 (3) 0.5370 (2) −0.06677 (15) 0.0271 (7)
H25 −0.0130 0.5185 −0.1013 0.032*
C26 0.1429 (3) 0.4948 (2) −0.04721 (14) 0.0251 (7)
H26 0.1618 0.4469 −0.0681 0.030*
C27 0.2181 (3) 0.5233 (2) 0.00294 (14) 0.0206 (7)
C28 0.3287 (3) 0.4809 (2) 0.02717 (14) 0.0199 (6)
C29 0.3627 (3) 0.4028 (2) −0.00154 (15) 0.0276 (8)
H29A 0.4358 0.3813 0.0215 0.041*
H29B 0.3701 0.4182 −0.0406 0.041*
H29C 0.3048 0.3578 −0.0044 0.041*
C30 0.5512 (3) 0.51657 (19) 0.14719 (14) 0.0190 (6)
C31 0.6976 (3) 0.4020 (2) 0.15170 (14) 0.0201 (6)
H31 0.6894 0.4084 0.1089 0.024*
C32 0.6353 (3) 0.3209 (2) 0.16215 (16) 0.0270 (7)
H32A 0.5549 0.3247 0.1402 0.032*
H32B 0.6367 0.3165 0.2040 0.032*
C33 0.6892 (3) 0.2400 (2) 0.14331 (16) 0.0293 (8)
H33A 0.6822 0.2421 0.1008 0.035*
H33B 0.6481 0.1881 0.1518 0.035*
C34 0.8146 (3) 0.2328 (2) 0.17482 (15) 0.0270 (7)
H34A 0.8220 0.2263 0.2172 0.032*
H34B 0.8485 0.1811 0.1609 0.032*
C35 0.8768 (3) 0.3138 (2) 0.16309 (15) 0.0267 (7)
H35A 0.8746 0.3170 0.1211 0.032*
H35B 0.9575 0.3101 0.1847 0.032*
C36 0.8240 (3) 0.3964 (2) 0.18138 (14) 0.0210 (7)
H36A 0.8340 0.3966 0.2241 0.025*
H36B 0.8637 0.4477 0.1708 0.025*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Sn1 0.01286 (11) 0.01495 (11) 0.01646 (11) 0.00097 (8) 0.00287 (8) −0.00118 (7)
Sn2 0.01488 (11) 0.01646 (11) 0.02229 (12) 0.00343 (8) 0.00465 (9) 0.00327 (8)
Cl1 0.0192 (4) 0.0265 (4) 0.0189 (4) −0.0054 (3) 0.0042 (3) −0.0003 (3)
Cl2 0.0308 (4) 0.0354 (5) 0.0290 (4) −0.0129 (4) 0.0121 (4) 0.0003 (4)
Cl3 0.0215 (4) 0.0236 (4) 0.0203 (4) −0.0032 (3) 0.0031 (3) 0.0034 (3)
Cl4 0.0283 (4) 0.0253 (4) 0.0356 (5) 0.0044 (3) 0.0158 (4) 0.0093 (3)
S1 0.0168 (4) 0.0223 (4) 0.0214 (4) 0.0031 (3) −0.0019 (3) −0.0079 (3)
S2 0.0177 (4) 0.0191 (4) 0.0297 (4) 0.0030 (3) 0.0008 (3) −0.0036 (3)
N1 0.0133 (12) 0.0217 (13) 0.0157 (13) −0.0007 (11) 0.0015 (10) 0.0028 (10)
N2 0.0129 (12) 0.0185 (12) 0.0189 (13) 0.0000 (10) 0.0038 (10) −0.0034 (10)
N3 0.0151 (12) 0.0196 (13) 0.0217 (14) 0.0039 (11) 0.0013 (11) −0.0052 (11)
N4 0.0175 (13) 0.0227 (13) 0.0194 (13) 0.0030 (11) 0.0017 (11) −0.0040 (11)
N5 0.0158 (13) 0.0216 (13) 0.0223 (14) 0.0049 (11) 0.0056 (11) 0.0064 (11)
N6 0.0135 (12) 0.0210 (13) 0.0210 (14) 0.0042 (11) 0.0028 (10) 0.0051 (11)
N7 0.0141 (12) 0.0227 (13) 0.0213 (14) 0.0057 (11) 0.0011 (11) 0.0019 (11)
supporting information
sup-8
Acta Crys t. (2012). E68, m909–m910
N8 0.0155 (13) 0.0215 (13) 0.0238 (14) 0.0017 (11) 0.0003 (11) −0.0031 (11)
C1 0.0259 (16) 0.0191 (15) 0.0136 (14) 0.0113 (13) 0.0002 (12) −0.0029 (12)
C2 0.049 (2) 0.033 (2) 0.042 (2) 0.0048 (19) 0.008 (2) 0.0017 (18)
C3 0.049 (3) 0.040 (2) 0.050 (3) 0.004 (2) 0.012 (2) 0.000 (2)
C4 0.066 (3) 0.053 (3) 0.050 (3) −0.018 (3) 0.014 (2) 0.000 (2)
C5 0.0166 (15) 0.0300 (17) 0.0231 (17) 0.0027 (14) 0.0044 (13) 0.0078 (14)
C6 0.0181 (16) 0.042 (2) 0.0219 (17) 0.0015 (15) 0.0001 (14) 0.0104 (15)
C7 0.0177 (16) 0.052 (2) 0.0171 (16) −0.0074 (16) −0.0012 (13) 0.0048 (16)
C8 0.0215 (16) 0.0353 (19) 0.0213 (17) −0.0068 (15) 0.0060 (14) −0.0023 (14)
C9 0.0131 (14) 0.0276 (16) 0.0182 (15) −0.0052 (13) 0.0042 (12) −0.0012 (13)
C10 0.0168 (15) 0.0246 (16) 0.0199 (16) −0.0013 (13) 0.0046 (13) −0.0057 (13)
C11 0.0293 (19) 0.0327 (19) 0.036 (2) 0.0007 (16) 0.0001 (16) −0.0191 (16)
C12 0.0167 (15) 0.0209 (15) 0.0214 (16) 0.0000 (13) 0.0059 (13) −0.0010 (12)
C13 0.0176 (15) 0.0175 (14) 0.0206 (16) 0.0033 (12) 0.0058 (13) −0.0018 (12)
C14 0.0244 (17) 0.0220 (16) 0.0251 (17) −0.0034 (14) 0.0081 (14) −0.0025 (13)
C15 0.0311 (19) 0.0296 (18) 0.032 (2) −0.0049 (16) 0.0132 (16) −0.0087 (15)
C16 0.0300 (19) 0.032 (2) 0.048 (2) 0.0100 (16) 0.0083 (18) −0.0124 (17)
C17 0.055 (3) 0.0286 (19) 0.033 (2) 0.0195 (19) 0.0063 (19) 0.0075 (16)
C18 0.037 (2) 0.0295 (18) 0.0239 (18) 0.0106 (16) 0.0052 (15) 0.0042 (14)
C19 0.0216 (15) 0.0121 (13) 0.0146 (14) 0.0057 (12) 0.0055 (12) 0.0038 (11)
C20 0.0323 (19) 0.0256 (17) 0.034 (2) 0.0057 (15) 0.0128 (16) 0.0048 (15)
C21 0.0302 (19) 0.0277 (18) 0.034 (2) 0.0049 (15) 0.0106 (16) 0.0036 (15)
C22 0.0277 (19) 0.0325 (19) 0.042 (2) 0.0031 (16) 0.0075 (17) 0.0015 (17)
C23 0.0194 (16) 0.0274 (17) 0.0283 (18) 0.0043 (14) 0.0053 (14) 0.0093 (14)
C24 0.0179 (16) 0.0328 (19) 0.0320 (19) 0.0043 (15) 0.0053 (14) 0.0143 (15)
C25 0.0194 (16) 0.038 (2) 0.0210 (17) −0.0028 (15) −0.0005 (13) 0.0090 (15)
C26 0.0199 (16) 0.0331 (18) 0.0217 (17) 0.0007 (14) 0.0035 (13) 0.0039 (14)
C27 0.0168 (15) 0.0258 (16) 0.0189 (16) 0.0028 (13) 0.0036 (12) 0.0073 (13)
C28 0.0165 (15) 0.0238 (16) 0.0194 (16) 0.0019 (13) 0.0046 (12) 0.0034 (13)
C29 0.0232 (17) 0.0313 (18) 0.0267 (18) 0.0069 (15) 0.0027 (14) −0.0046 (14)
C30 0.0157 (15) 0.0176 (15) 0.0236 (16) 0.0006 (12) 0.0045 (13) 0.0027 (12)
C31 0.0146 (15) 0.0217 (15) 0.0230 (16) 0.0027 (13) 0.0026 (13) −0.0002 (13)
C32 0.0184 (16) 0.0232 (16) 0.038 (2) −0.0010 (14) 0.0040 (15) 0.0029 (15)
C33 0.0301 (18) 0.0205 (16) 0.033 (2) −0.0003 (15) −0.0002 (16) −0.0050 (14)
C34 0.0296 (18) 0.0220 (16) 0.0281 (18) 0.0083 (15) 0.0044 (15) −0.0025 (14)
C35 0.0199 (16) 0.0303 (18) 0.0283 (18) 0.0063 (14) 0.0027 (14) −0.0053 (14)
C36 0.0171 (15) 0.0213 (15) 0.0233 (16) 0.0006 (13) 0.0022 (13) −0.0035 (13)
Geometric parameters (Å, º)
Sn1—C1 2.187 (3) C13—H13 1.0000
Sn1—N1 2.269 (2) C14—C15 1.529 (4)
Sn1—N2 2.209 (2) C14—H14A 0.9900
Sn1—S1 2.4785 (8) C14—H14B 0.9900
Sn1—Cl1 2.5123 (8) C15—C16 1.513 (5)
Sn1—Cl2 2.4959 (8) C15—H15A 0.9900
Sn2—C19 2.182 (3) C15—H15B 0.9900
Sn2—N5 2.255 (3) C16—C17 1.514 (5)
supporting information
sup-9
Acta Crys t. (2012). E68, m909–m910
Sn2—N6 2.215 (3) C16—H16A 0.9900
Sn2—S2 2.4806 (8) C16—H16B 0.9900
Sn2—Cl3 2.4959 (8) C17—C18 1.535 (5)
Sn2—Cl4 2.5124 (8) C17—H17A 0.9900
S1—C12 1.757 (3) C17—H17B 0.9900
S2—C30 1.754 (3) C18—H18A 0.9900
N1—C5 1.345 (4) C18—H18B 0.9900
N1—C9 1.346 (4) C19—C20 1.539 (5)
N2—C10 1.296 (4) C19—H19A 0.9900
N2—N3 1.356 (3) C19—H19B 0.9900
N3—C12 1.324 (4) C20—C21 1.530 (5)
N4—C12 1.346 (4) C20—H20A 0.9900
N4—C13 1.476 (4) C20—H20B 0.9900
N4—H4 0.8800 C21—C22 1.518 (5)
N5—C23 1.342 (4) C21—H21A 0.9900
N5—C27 1.360 (4) C21—H21B 0.9900
N6—C28 1.296 (4) C22—H22A 0.9800
N6—N7 1.363 (3) C22—H22B 0.9800
N7—C30 1.329 (4) C22—H22C 0.9800
N8—C30 1.347 (4) C23—C24 1.383 (5)
N8—C31 1.477 (4) C23—H23 0.9500
N8—H8 0.8800 C24—C25 1.381 (5)
C1—C2 1.511 (5) C24—H24 0.9500
C1—H1A 0.9900 C25—C26 1.393 (5)
C1—H1B 0.9900 C25—H25 0.9500
C2—C3 1.525 (6) C26—C27 1.385 (5)
C2—H2A 0.9900 C26—H26 0.9500
C2—H2B 0.9900 C27—C28 1.479 (4)
C3—C4 1.488 (6) C28—C29 1.491 (4)
C3—H3A 0.9900 C29—H29A 0.9800
C3—H3B 0.9900 C29—H29B 0.9800
C4—H4A 0.9800 C29—H29C 0.9800
C4—H4B 0.9800 C31—C32 1.514 (4)
C4—H4C 0.9800 C31—C36 1.527 (4)
C5—C6 1.382 (5) C31—H31 1.0000
C5—H5 0.9500 C32—C33 1.526 (5)
C6—C7 1.370 (5) C32—H32A 0.9900
C6—H6 0.9500 C32—H32B 0.9900
C7—C8 1.397 (5) C33—C34 1.529 (5)
C7—H7 0.9500 C33—H33A 0.9900
C8—C9 1.392 (4) C33—H33B 0.9900
C8—H8A 0.9500 C34—C35 1.521 (5)
C9—C10 1.475 (4) C34—H34A 0.9900
C10—C11 1.491 (4) C34—H34B 0.9900
C11—H11A 0.9800 C35—C36 1.537 (4)
C11—H11B 0.9800 C35—H35A 0.9900
C11—H11C 0.9800 C35—H35B 0.9900
C13—C18 1.511 (4) C36—H36A 0.9900
supporting information
sup-10
Acta Crys t. (2012). E68, m909–m910
C13—C14 1.524 (4) C36—H36B 0.9900
C1—Sn1—N2 170.84 (11) C15—C14—H14B 109.7
C1—Sn1—N1 99.08 (10) H14A—C14—H14B 108.2
N2—Sn1—N1 72.10 (9) C16—C15—C14 110.9 (3)
C1—Sn1—S1 109.02 (8) C16—C15—H15A 109.5
N2—Sn1—S1 79.68 (7) C14—C15—H15A 109.5
N1—Sn1—S1 151.72 (7) C16—C15—H15B 109.5
C1—Sn1—Cl2 97.62 (9) C14—C15—H15B 109.5
N2—Sn1—Cl2 84.11 (7) H15A—C15—H15B 108.0
N1—Sn1—Cl2 83.77 (7) C15—C16—C17 111.8 (3)
S1—Sn1—Cl2 95.41 (3) C15—C16—H16A 109.3
C1—Sn1—Cl1 91.72 (9) C17—C16—H16A 109.3
N2—Sn1—Cl1 85.09 (7) C15—C16—H16B 109.3
N1—Sn1—Cl1 84.60 (6) C17—C16—H16B 109.3
S1—Sn1—Cl1 91.23 (3) H16A—C16—H16B 107.9
Cl2—Sn1—Cl1 166.10 (3) C16—C17—C18 111.8 (3)
C19—Sn2—N6 172.08 (10) C16—C17—H17A 109.3
C19—Sn2—N5 100.43 (10) C18—C17—H17A 109.3
N6—Sn2—N5 72.94 (9) C16—C17—H17B 109.3
C19—Sn2—S2 107.53 (8) C18—C17—H17B 109.3
N6—Sn2—S2 79.14 (7) H17A—C17—H17B 107.9
N5—Sn2—S2 152.04 (7) C13—C18—C17 110.1 (3)
C19—Sn2—Cl3 96.95 (8) C13—C18—H18A 109.6
N6—Sn2—Cl3 86.80 (7) C17—C18—H18A 109.6
N5—Sn2—Cl3 84.25 (7) C13—C18—H18B 109.6
S2—Sn2—Cl3 92.90 (3) C17—C18—H18B 109.6
C19—Sn2—Cl4 91.03 (8) H18A—C18—H18B 108.1
N6—Sn2—Cl4 83.88 (7) C20—C19—Sn2 108.84 (19)
N5—Sn2—Cl4 82.31 (7) C20—C19—H19A 109.9
S2—Sn2—Cl4 96.31 (3) Sn2—C19—H19A 109.9
Cl3—Sn2—Cl4 165.42 (3) C20—C19—H19B 109.9
C12—S1—Sn1 94.85 (11) Sn2—C19—H19B 109.9
C30—S2—Sn2 95.45 (11) H19A—C19—H19B 108.3
C5—N1—C9 119.8 (3) C21—C20—C19 110.7 (3)
C5—N1—Sn1 124.6 (2) C21—C20—H20A 109.5
C9—N1—Sn1 115.58 (19) C19—C20—H20A 109.5
C10—N2—N3 118.6 (3) C21—C20—H20B 109.5
C10—N2—Sn1 120.2 (2) C19—C20—H20B 109.5
N3—N2—Sn1 121.25 (18) H20A—C20—H20B 108.1
C12—N3—N2 115.8 (2) C22—C21—C20 112.1 (3)
C12—N4—C13 122.0 (3) C22—C21—H21A 109.2
C12—N4—H4 119.0 C20—C21—H21A 109.2
C13—N4—H4 119.0 C22—C21—H21B 109.2
C23—N5—C27 119.8 (3) C20—C21—H21B 109.2
C23—N5—Sn2 125.1 (2) H21A—C21—H21B 107.9
C27—N5—Sn2 115.03 (19) C21—C22—H22A 109.5
C28—N6—N7 118.8 (3) C21—C22—H22B 109.5
supporting information
sup-11
Acta Crys t. (2012). E68, m909–m910
C28—N6—Sn2 119.3 (2) H22A—C22—H22B 109.5
N7—N6—Sn2 121.91 (19) C21—C22—H22C 109.5
C30—N7—N6 115.1 (3) H22A—C22—H22C 109.5
C30—N8—C31 123.7 (3) H22B—C22—H22C 109.5
C30—N8—H8 118.2 N5—C23—C24 121.8 (3)
C31—N8—H8 118.2 N5—C23—H23 119.1
C2—C1—Sn1 114.6 (2) C24—C23—H23 119.1
C2—C1—H1A 108.6 C25—C24—C23 119.2 (3)
Sn1—C1—H1A 108.6 C25—C24—H24 120.4
C2—C1—H1B 108.6 C23—C24—H24 120.4
Sn1—C1—H1B 108.6 C24—C25—C26 119.1 (3)
H1A—C1—H1B 107.6 C24—C25—H25 120.5
C1—C2—C3 115.7 (3) C26—C25—H25 120.5
C1—C2—H2A 108.3 C27—C26—C25 119.6 (3)
C3—C2—H2A 108.3 C27—C26—H26 120.2
C1—C2—H2B 108.3 C25—C26—H26 120.2
C3—C2—H2B 108.3 N5—C27—C26 120.6 (3)
H2A—C2—H2B 107.4 N5—C27—C28 116.6 (3)
C4—C3—C2 112.4 (4) C26—C27—C28 122.8 (3)
C4—C3—H3A 109.1 N6—C28—C27 116.0 (3)
C2—C3—H3A 109.1 N6—C28—C29 123.6 (3)
C4—C3—H3B 109.1 C27—C28—C29 120.4 (3)
C2—C3—H3B 109.1 C28—C29—H29A 109.5
H3A—C3—H3B 107.9 C28—C29—H29B 109.5
C3—C4—H4A 109.5 H29A—C29—H29B 109.5
C3—C4—H4B 109.5 C28—C29—H29C 109.5
H4A—C4—H4B 109.5 H29A—C29—H29C 109.5
C3—C4—H4C 109.5 H29B—C29—H29C 109.5
H4A—C4—H4C 109.5 N7—C30—N8 116.4 (3)
H4B—C4—H4C 109.5 N7—C30—S2 128.3 (2)
N1—C5—C6 122.0 (3) N8—C30—S2 115.3 (2)
N1—C5—H5 119.0 N8—C31—C32 112.3 (3)
C6—C5—H5 119.0 N8—C31—C36 107.8 (2)
C7—C6—C5 119.0 (3) C32—C31—C36 111.3 (3)
C7—C6—H6 120.5 N8—C31—H31 108.4
C5—C6—H6 120.5 C32—C31—H31 108.4
C6—C7—C8 119.4 (3) C36—C31—H31 108.4
C6—C7—H7 120.3 C31—C32—C33 111.4 (3)
C8—C7—H7 120.3 C31—C32—H32A 109.3
C9—C8—C7 119.0 (3) C33—C32—H32A 109.3
C9—C8—H8A 120.5 C31—C32—H32B 109.3
C7—C8—H8A 120.5 C33—C32—H32B 109.3
N1—C9—C8 120.8 (3) H32A—C32—H32B 108.0
N1—C9—C10 116.5 (3) C32—C33—C34 111.3 (3)
C8—C9—C10 122.7 (3) C32—C33—H33A 109.4
N2—C10—C9 115.6 (3) C34—C33—H33A 109.4
N2—C10—C11 123.0 (3) C32—C33—H33B 109.4
C9—C10—C11 121.3 (3) C34—C33—H33B 109.4
supporting information
sup-12
Acta Crys t. (2012). E68, m909–m910
C10—C11—H11A 109.5 H33A—C33—H33B 108.0
C10—C11—H11B 109.5 C35—C34—C33 109.2 (3)
H11A—C11—H11B 109.5 C35—C34—H34A 109.8
C10—C11—H11C 109.5 C33—C34—H34A 109.8
H11A—C11—H11C 109.5 C35—C34—H34B 109.8
H11B—C11—H11C 109.5 C33—C34—H34B 109.8
N3—C12—N4 115.5 (3) H34A—C34—H34B 108.3
N3—C12—S1 128.4 (2) C34—C35—C36 112.0 (3)
N4—C12—S1 116.2 (2) C34—C35—H35A 109.2
N4—C13—C18 109.3 (3) C36—C35—H35A 109.2
N4—C13—C14 111.4 (3) C34—C35—H35B 109.2
C18—C13—C14 111.4 (3) C36—C35—H35B 109.2
N4—C13—H13 108.2 H35A—C35—H35B 107.9
C18—C13—H13 108.2 C31—C36—C35 110.9 (3)
C14—C13—H13 108.2 C31—C36—H36A 109.5
C13—C14—C15 109.9 (3) C35—C36—H36A 109.5
C13—C14—H14A 109.7 C31—C36—H36B 109.5
C15—C14—H14A 109.7 C35—C36—H36B 109.5
C13—C14—H14B 109.7 H36A—C36—H36B 108.0
C1—Sn1—S1—C12 −177.39 (14) C7—C8—C9—C10 179.8 (3)
N2—Sn1—S1—C12 −0.37 (12) N3—N2—C10—C9 179.6 (2)
N1—Sn1—S1—C12 −4.29 (18) Sn1—N2—C10—C9 −0.4 (4)
Cl2—Sn1—S1—C12 82.62 (11) N3—N2—C10—C11 0.5 (5)
Cl1—Sn1—S1—C12 −85.15 (11) Sn1—N2—C10—C11 −179.5 (3)
C19—Sn2—S2—C30 −177.45 (13) N1—C9—C10—N2 1.9 (4)
N6—Sn2—S2—C30 −1.86 (12) C8—C9—C10—N2 −178.1 (3)
N5—Sn2—S2—C30 1.13 (18) N1—C9—C10—C11 −179.0 (3)
Cl3—Sn2—S2—C30 84.32 (11) C8—C9—C10—C11 1.1 (5)
Cl4—Sn2—S2—C30 −84.36 (11) N2—N3—C12—N4 −178.4 (2)
C1—Sn1—N1—C5 −3.2 (3) N2—N3—C12—S1 1.6 (4)
N2—Sn1—N1—C5 179.3 (3) C13—N4—C12—N3 0.2 (4)
S1—Sn1—N1—C5 −176.62 (18) C13—N4—C12—S1 −179.8 (2)
Cl2—Sn1—N1—C5 93.5 (2) Sn1—S1—C12—N3 −0.5 (3)
Cl1—Sn1—N1—C5 −94.1 (2) Sn1—S1—C12—N4 179.5 (2)
C1—Sn1—N1—C9 179.1 (2) C12—N4—C13—C18 157.8 (3)
N2—Sn1—N1—C9 1.6 (2) C12—N4—C13—C14 −78.7 (4)
S1—Sn1—N1—C9 5.7 (3) N4—C13—C14—C15 179.3 (3)
Cl2—Sn1—N1—C9 −84.2 (2) C18—C13—C14—C15 −58.4 (4)
Cl1—Sn1—N1—C9 88.2 (2) C13—C14—C15—C16 56.8 (4)
N1—Sn1—N2—C10 −0.6 (2) C14—C15—C16—C17 −55.3 (4)
S1—Sn1—N2—C10 −178.7 (2) C15—C16—C17—C18 54.3 (4)
Cl2—Sn1—N2—C10 84.7 (2) N4—C13—C18—C17 −179.4 (3)
Cl1—Sn1—N2—C10 −86.5 (2) C14—C13—C18—C17 57.1 (4)
N1—Sn1—N2—N3 179.4 (2) C16—C17—C18—C13 −54.7 (4)
S1—Sn1—N2—N3 1.3 (2) N5—Sn2—C19—C20 −148.9 (2)
Cl2—Sn1—N2—N3 −95.3 (2) S2—Sn2—C19—C20 30.4 (2)
Cl1—Sn1—N2—N3 93.5 (2) Cl3—Sn2—C19—C20 125.7 (2)
supporting information
sup-13
Acta Crys t. (2012). E68, m909–m910
C10—N2—N3—C12 178.0 (3) Cl4—Sn2—C19—C20 −66.6 (2)
Sn1—N2—N3—C12 −2.0 (4) Sn2—C19—C20—C21 179.4 (2)
C19—Sn2—N5—C23 −5.0 (3) C19—C20—C21—C22 173.3 (3)
N6—Sn2—N5—C23 179.5 (3) C27—N5—C23—C24 0.2 (5)
S2—Sn2—N5—C23 176.41 (18) Sn2—N5—C23—C24 177.0 (2)
Cl3—Sn2—N5—C23 91.1 (2) N5—C23—C24—C25 −0.6 (5)
Cl4—Sn2—N5—C23 −94.6 (2) C23—C24—C25—C26 0.8 (5)
C19—Sn2—N5—C27 172.0 (2) C24—C25—C26—C27 −0.6 (5)
N6—Sn2—N5—C27 −3.5 (2) C23—N5—C27—C26 0.0 (5)
S2—Sn2—N5—C27 −6.6 (3) Sn2—N5—C27—C26 −177.1 (2)
Cl3—Sn2—N5—C27 −91.9 (2) C23—N5—C27—C28 −178.5 (3)
Cl4—Sn2—N5—C27 82.4 (2) Sn2—N5—C27—C28 4.3 (3)
N5—Sn2—N6—C28 2.4 (2) C25—C26—C27—N5 0.2 (5)
S2—Sn2—N6—C28 −179.0 (2) C25—C26—C27—C28 178.7 (3)
Cl3—Sn2—N6—C28 87.4 (2) N7—N6—C28—C27 179.0 (3)
Cl4—Sn2—N6—C28 −81.4 (2) Sn2—N6—C28—C27 −1.0 (4)
N5—Sn2—N6—N7 −177.6 (2) N7—N6—C28—C29 −0.4 (5)
S2—Sn2—N6—N7 0.9 (2) Sn2—N6—C28—C29 179.6 (2)
Cl3—Sn2—N6—N7 −92.6 (2) N5—C27—C28—N6 −2.3 (4)
Cl4—Sn2—N6—N7 98.6 (2) C26—C27—C28—N6 179.2 (3)
C28—N6—N7—C30 −179.1 (3) N5—C27—C28—C29 177.1 (3)
Sn2—N6—N7—C30 1.0 (4) C26—C27—C28—C29 −1.4 (5)
N1—Sn1—C1—C2 99.3 (3) N6—N7—C30—N8 178.9 (3)
S1—Sn1—C1—C2 −84.0 (2) N6—N7—C30—S2 −3.6 (4)
Cl2—Sn1—C1—C2 14.4 (3) C31—N8—C30—N7 −0.9 (4)
Cl1—Sn1—C1—C2 −175.9 (2) C31—N8—C30—S2 −178.8 (2)
Sn1—C1—C2—C3 72.2 (4) Sn2—S2—C30—N7 3.7 (3)
C1—C2—C3—C4 71.6 (5) Sn2—S2—C30—N8 −178.7 (2)
C9—N1—C5—C6 0.6 (5) C30—N8—C31—C32 −73.1 (4)
Sn1—N1—C5—C6 −177.0 (2) C30—N8—C31—C36 164.0 (3)
N1—C5—C6—C7 −0.5 (5) N8—C31—C32—C33 −176.1 (3)
C5—C6—C7—C8 0.1 (5) C36—C31—C32—C33 −55.1 (4)
C6—C7—C8—C9 0.2 (5) C31—C32—C33—C34 57.3 (4)
C5—N1—C9—C8 −0.3 (4) C32—C33—C34—C35 −57.4 (4)
Sn1—N1—C9—C8 177.6 (2) C33—C34—C35—C36 56.8 (4)
C5—N1—C9—C10 179.8 (3) N8—C31—C36—C35 177.4 (3)
Sn1—N1—C9—C10 −2.4 (3) C32—C31—C36—C35 53.9 (4)
C7—C8—C9—N1 −0.1 (5) C34—C35—C36—C31 −55.6 (4)
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—H H···AD···AD—H···A
N4—H4···Cl3 0.88 2.65 3.516 (3) 167
C15—H15A···Cg1i0.99 2.85 3.692 (4) 143
Symmetry code: (i) −x+1, −y+1, −z+1.
Available via license: CC BY 2.0
Content may be subject to copyright.
Content uploaded by Md. Abu Affan
Author content
All content in this area was uploaded by Md. Abu Affan
Content may be subject to copyright.