Novel B-12-Dependent Acyl-CoA Mutases and Their Biotechnological Potential

Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States.
Biochemistry (Impact Factor: 3.02). 07/2012; 51(31):6039-46. DOI: 10.1021/bi300827v
Source: PubMed


The recent spate of discoveries of novel acyl-CoA mutases has engendered a growing appreciation for the diversity of 5'-deoxyadenosylcobalamin-dependent rearrangement reactions. The prototype of the reaction catalyzed by these enzymes is the 1,2 interchange of a hydrogen atom with a thioester group leading to a change in the degree of carbon skeleton branching. These enzymes are predicted to share common architectural elements: a Rossman fold and a triose phosphate isomerase (TIM)-barrel domain for binding cofactor and substrate, respectively. Within this family, methylmalonyl-CoA mutase (MCM) is the best studied and is the only member found in organisms ranging from bacteria to man. MCM interconverts (2R)-methylmalonyl-CoA and succinyl-CoA. The more recently discovered family members include isobutyryl-CoA mutase (ICM), which interconverts isobutyryl-CoA and n-butyryl-CoA; ethylmalonyl-CoA mutase, which interconverts (2R)-ethylmalonyl-CoA and (2S)-methylsuccinyl-CoA; and 2-hydroxyisobutyryl-CoA mutase, which interconverts 2-hydroxyisobutyryl-CoA and (3S)-hydroxybutyryl-CoA. A variant in which the two subunits of ICM are fused to a G-protein chaperone, IcmF, has been described recently. In addition to its ICM activity, IcmF also catalyzes the interconversion of isovaleryl-CoA and pivalyl-CoA. This review focuses on the involvement of acyl-CoA mutases in central carbon and secondary bacterial metabolism and on their biotechnological potential for applications ranging from bioremediation to stereospecific synthesis of C2-C5 carboxylic acids and alcohols, and for production of potential commodity and specialty chemicals.

8 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: G-protein metallochaperones ensure fidelity during cofactor assembly for a variety of metalloproteins, including adenosylcobalamin (AdoCbl)-dependent methylmalonyl-CoA mutase and hydrogenase, and thus have both medical and biofuel development applications. Here, we present crystal structures of IcmF, a natural fusion protein of AdoCbl-dependent isobutyryl-CoA mutase and its corresponding G-protein chaperone, which reveal the molecular architecture of a G-protein metallochaperone in complex with its target protein. These structures show that conserved G-protein elements become ordered upon target protein association, creating the molecular pathways that both sense and report on the cofactor loading state. Structures determined of both apo- and holo-forms of IcmF depict both open and closed enzyme states, in which the cofactor-binding domain is alternatively positioned for cofactor loading and for catalysis. Notably, the G protein moves as a unit with the cofactor-binding domain, providing a visualization of how a chaperone assists in the sequestering of a precious cofactor inside an enzyme active site.
    No preview · Article · Feb 2015 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial coenzyme B12-dependent 2-hydroxyisobutyryl-CoA mutase (HCM) is a radical enzyme catalyzing the stereospecific interconversion of (S)-3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA. It consists of two subunits, HcmA and HcmB. To characterize the determinants of substrate specificity, we have analyzed the crystal structure of HCM from Aquincola tertiaricarbonis in complex with coenzyme B12 and the substrates (S)-3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in alternative binding. Compared to the well-studied structure of bacterial and mitochondrial B12-dependent methylmalonyl-CoA mutase (MCM), HCM has a highly conserved domain architecture. However, inspection of the substrate binding site identified amino acid residues not present in MCM, namely HcmA Ile(A90) and Asp(A117). Asp(A117) determines the orientation of the hydroxyl group of the acyl-CoA esters by H-bond formation, thus determining stereospecificity of catalysis. Accordingly, HcmA D117A and D117V mutations resulted in significantly increased activity towards (R)-hydroxybutyryl-CoA. Besides interconversion of hydroxylated acyl-CoA esters, wild-type HCM as well as HcmA I90V and I90A mutant enzymes could also isomerize pivalyl- and isovaleryl-CoA, albeit at >10 times lower rates than the favorite substrate (S)-3-hydroxybutyryl-CoA. The nonconservative mutation HcmA D117V, however, resulted in an enzyme showing high activity towards pivalyl-CoA. Structural requirements for binding and isomerization of highly branched acyl-CoA substrates such as 2-hydroxyisobutyryl- and pivalyl-CoA, possessing tertiary and quaternary carbon atoms, respectively, are discussed. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Full-text · Article · Feb 2015 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recent discovery of a coenzyme B12-dependent acyl-coenzyme A (CoA) mutase isomerizing 3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in the mesophilic bacterium Aquincola tertiaricarbonis L108 (Yaneva et al., J. Biol. Chem., 287:15502-15511, 2012) could pave the way for a complete biosynthesis route to the building block chemical 2-hydroxyisobutyric acid from renewable carbon. However, the enzyme catalyzes only the conversion of the stereoisomer (S)-3-hydroxybutyryl-CoA at reasonable rates which seriously hampers an efficient combination of mutase and well-established bacterial poly-(R)-3-hydroxybutyrate (PHB) overflow metabolism. Here, we characterize a new 2-hydroxyisobutyryl-CoA mutase found in the thermophilic knallgas bacterium Kyrpidia tusciae DSM 2912. Reconstituted mutase subunits revealed highest activity at 55°C. Surprisingly, already at 30°C isomerization of (R)-3-hydroxybutyryl-CoA was about 7,000 times more efficient than with the mutase from strain L108. The most striking structural difference between the two mutases, likely determining stereospecificity, is a substitution of active site residue Asp found in strain L108 at position 117 with Val in the enzyme from strain DSM 2912, resulting in a reversed polarity at this binding site. Overall sequence comparison indicates that both enzymes descended from different prokaryotic thermophilic methylmalonyl-CoA mutases. Concomitant expression of PHB enzymes delivering (R)-3-hydroxybutyryl-CoA (beta-ketothiolase PhaA and acetoacetyl-CoA reductase PhaB from Cupriavidus necator) with the new mutase in E. coli JM109 and BL21 strains incubated on gluconic acid at 37°C led to the production of 2-hydroxyisobutyric acid at maximal titers of 0.7 mM. Measures to improve production in E. coli, such as co-expression of the chaperone MeaH and repression of thioesterase II, are discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    No preview · Article · Apr 2015 · Applied and Environmental Microbiology
Show more