Mechanisms of Bone Anabolism Regulated by Statins.

Bioscience Reports (Impact Factor: 2.64). 07/2012; 32(Pt 6). DOI: 10.1042/BSR20110118
Source: PubMed


Osteoporosis is a common disease in the elderly population. The progress of this disease results in the reduction of bone mass and can increase the incidence of fractures. Drugs presently used clinically can block the aggravation of this disease. However, these drugs cannot increase the bone mass and may result in certain side effects. Statins, also known as 3-hydroxy-3-methyl-glutarylcoenzyme A (HMG-CoA) reductase inhibitors, are widely prescribed for cardiovascular disease for decades. Nonetheless, accumulating studies demonstrate that statins exert bone anabolic effect and may be helpful for the treatment of osteoporosis. Abundant of experiments have analyzed the mechanisms of bone anabolism regulated by statins. In the present paper, we review the mechanisms of promoting osteogenesis, suppressing osteoblast apoptosis and inhibiting osteoclastogenesis.

Full-text preview

Available from:
  • Source
    • "Bone remodeling is a highly dynamic physiological process that constantly responds to altered demand for structural support [1] [2] [3]. Osteoblasts (bone forming cells) and osteoclasts (bone resorbing cells) work simultaneously to maintain bone density and strength [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis.
    Full-text · Article · Oct 2015 · Mediators of Inflammation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal tissue undergoes continuous remodeling which makes it unique among other body tissues. Osteoporosis is a common bone metabolic disorder affecting both men and women. Osteoporosis and its complications mainly osteoporotic fractures, have a high impact on health and economy. Current approved medications are associated with numerous side effects, which limit their use. Identification of a new and safe therapy is mandatory. Statins, also known as HMGCoA reductase inhibitors, are frequently used for the treatment of hypercholesterolemia and for the prevention of morbidity and mortality associated with cardiovascular disease. Statins improved bone health status in intact and ovariectomised rodents following high clinically intolerable oral doses. However, this beneficial effect of statins could not be significantly demonstrated in humans. The reason behind this discrepancy might be due to the safety and bioavailability of the currently used oral statins. Vitamin E, especially the tocotrienols at the dose 60 mg/kg/day provided significant anti-osteoporotic effects in different animal models of osteoporosis. The use of the aforementioned dose of tocotrienols was shown to be safe in both humans and animals. Enhancement of bone formation and reduction of bone resorption were achieved more effectively by a combination of tocotrienols and statins than by either treatment when supplemented separately at clinically tolerable doses. Therefore, the adverse effects associated with high statin doses might be avoided with the coadministration of tocotrienols. Moreover, the combination therapy strategy might be useful for patients who are at high risk of osteoporosis, cardiovascular events and hypercholesterolaemia.
    No preview · Article · Jul 2013 · Current drug targets
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although their primary therapeutic indications are different, aminobisphosphonates and statins target enzymes in the mevalonate pathway, which is critical for bone homeostasis. Previous studies have shown that some polymorphisms of the gene encoding farnesyl diphosphate synthase (FDPS), the main target of aminobisphosphonates, modulate the response to these drugs. In this study, we explored whether those single nucleotide polymorphisms (SNPs) also influence the changes in bone mineral density (BMD) following therapy with statins. Sixty-six patients with coronary heart disease were studied at baseline and after 1-year therapy with atorvastatin. BMD was measured by DXA. Three SNPs of the FDPS gene (rs2297480, rs11264359 and rs17367421) were analyzed by using Taqman assays. The results showed that there was no association between the SNPs and basal BMD. However, rs2297480 and rs11264359 alleles, which are in linkage disequilibrium, were associated with changes in hip BMD following atorvastatin therapy. Thus, patients with AA genotype at the rs2297480 locus had a 0.8 ± 0.8 % increase in BMD at the femoral neck, whereas in patients with AC/CC genotypes, BMD showed a 2.3 ± 0.8 % decrease (p = 0.02). Similar results were obtained regarding changes of BMD at the femoral trochanter and when alleles at the rs11264359 locus were analyzed. However, there was no association between BMD and rs17367421 alleles. In conclusion, these results suggest that polymorphisms of the FDPS gene may influence the bone response to various drugs targeting the mevalonate pathway, including not only aminobisphosphonates but also statins.
    Full-text · Article · Dec 2013 · Rheumatology International
Show more