Neuraxial Analgesia in Neonates and Infants: A Review of Clinical and Preclinical Strategies for the Development of Safety and Efficacy Data

Portex Unit: Pain Research, UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK.
Anesthesia and analgesia (Impact Factor: 3.47). 07/2012; 115(3):638-62. DOI: 10.1213/ANE.0b013e31826253f2
Source: PubMed


Neuraxial drugs provide robust pain control, have the potential to improve outcomes, and are an important component of the perioperative care of children. Opioids or clonidine improves analgesia when added to perioperative epidural infusions; analgesia is significantly prolonged by the addition of clonidine, ketamine, neostigmine, or tramadol to single-shot caudal injections of local anesthetic; and neonatal intrathecal anesthesia/analgesia is increasing in some centers. However, it is difficult to determine the relative risk-benefit of different techniques and drugs without detailed and sensitive data related to analgesia requirements, side effects, and follow-up. Current data related to benefits and complications in neonates and infants are summarized, but variability in current neuraxial drug use reflects the relative lack of high-quality evidence. Recent preclinical reports of adverse effects of general anesthetics on the developing brain have increased awareness of the potential benefit of neuraxial anesthesia/analgesia to avoid or reduce general anesthetic dose requirements. However, the developing spinal cord is also vulnerable to drug-related toxicity, and although there are well-established preclinical models and criteria for assessing spinal cord toxicity in adult animals, until recently there had been no systematic evaluation during early life. Therefore, in the second half of this review, we present preclinical data evaluating age-dependent changes in the pharmacodynamic response to different spinal analgesics, and recent studies evaluating spinal toxicity in specific developmental models. Finally, we advocate use of neuraxial drugs with the widest demonstrable safety margin and suggest minimum standards for preclinical evaluation before adoption of new analgesics or preparations into routine clinical practice.

Download full-text


Available from: Tony Yaksh, Jan 16, 2014
    • "Moreover, younger children (infants and neonates) may not be able to report sensory symptoms, and subtle changes may be missed. So, drugs with well documented safety profile with a wide therapeutic index should be used.[56] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Even after a vast safety record, the role of spinal anesthesia (SA) as a primary anesthetic technique in children remains contentious and is mainly limited to specialized pediatric centers. It is usually practiced on moribund former preterm infants (<60 weeks post-conception) to reduce the incidence of post-operative apnea when compared to general anesthesia (GA). However, there is ample literature to suggest its safety and efficacy for suitable procedures in older children as well. SA in children has many advantages as in adults with an added advantage of minimal cardio-respiratory disturbance. Recently, several reports from animal studies have raised serious concerns regarding the harmful effects of GA on young developing brain. This may further increase the utility of SA in children as it provides all components of balanced anesthesia technique. Also, SA can be an economical option for countries with finite resources. Limited duration of surgical anesthesia in children is one of the major deterrents for its widespread use in them. To overcome this, several additives like epinephrine, clonidine, fentanyl, morphine, neostigmine etc. have been used and found to be effective even in neonates. But, the developing spinal cord may also be vulnerable to drug-related toxicity, though this has not been systematically evaluated in children. So, adjuvants and drugs with widest therapeutic index should be preferred in children. Despite its widespread use, incidence of side-effects is low and permanent neurological sequalae have not been reported with SA. Literature yields encouraging results regarding its safety and efficacy. Technical skills and constant vigilance of experienced anesthesia providers is indispensable to achieve good results with this technique.
    No preview · Article · Mar 2014 · Journal of Anaesthesiology Clinical Pharmacology
  • Source
    • "A range of regional analgesic techniques can be effectively used in neonates (see recent reviews plus special edition of Pediatric Anesthesia January 2012) (125–127). Although analgesic efficacy has been demonstrated for many, there has been limited direct comparison of techniques or evaluation of relative benefits and risks in controlled trials in neonates (1). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective management of procedural and postoperative pain in neonates is required to minimize acute physiological and behavioral distress and may also improve acute and long-term outcomes. Painful stimuli activate nociceptive pathways, from the periphery to the cortex, in neonates and behavioral responses form the basis for validated pain assessment tools. However, there is an increasing awareness of the need to not only reduce acute behavioral responses to pain in neonates, but also to protect the developing nervous system from persistent sensitization of pain pathways and potential damaging effects of altered neural activity on central nervous system development. Analgesic requirements are influenced by age-related changes in both pharmacokinetic and pharmacodynamic response, and increasing data are available to guide safe and effective dosing with opioids and paracetamol. Regional analgesic techniques provide effective perioperative analgesia, but higher complication rates in neonates emphasize the importance of monitoring and choice of the most appropriate drug and dose. There have been significant improvements in the understanding and management of neonatal pain, but additional research evidence will further reduce the need to extrapolate data from older age groups. Translation into improved clinical care will continue to depend on an integrated approach to implementation that encompasses assessment and titration against individual response, education and training, and audit and feedback.
    Full-text · Article · Jan 2014 · Pediatric Anesthesia
  • Source
    • "Anesthesia is a modern human invention which was clinically introduced for the first time in October 1846 by William Morton, though the clinical effects of nitrous oxide had been discovered in 1844 (1).The introduction and utilization of anesthetic drugs has passed a long way, introducing newer generations of more effective drugs with less unwanted side effects; however, this process is not completed yet and the available anesthetic agents have their current side effects of course with a very low incidence (2).Liver is one of the main body organs performing drug metabolism among its many specific and unique functions. However, drug detoxification would create a spectrum of biochemical by-products imposed to the liver cells; while many pharmaceuticals, includingmost anesthetics, are metabolized, totally or partially, in the liver. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The modern practice of anesthesia is highly dependent ona group of anesthetic drugs which many of them are metabolized in the liver. The liver, of course, usually tolerates this burden. However, this is not always an unbroken rule. Anesthetic induced apoptosis has gained great concern during the last years; especially considering the neurologic system. However, we have evidence that there is some concern regarding their effects on the liver cells. Fortunately not all the anesthetics are blamed and even some could be used safely, based on the available evidence. Besides, there are some novel agents, yet under research, which could affect the future of anesthetic agents' fate regarding their hepatic effects.
    Full-text · Article · Aug 2013 · Hepatitis Monthly
Show more