Methionine-enriched diet decreases hippocampal antioxidant defences and impairs spontaneous behaviour and long-term potentiation in rats

Department of Experimental Medicine-Section of Human Physiology, Second University of Naples, via De Crecchio 8, 80138 Naples, Italy.
Brain research (Impact Factor: 2.84). 07/2012; 1471:66-74. DOI: 10.1016/j.brainres.2012.06.048
Source: PubMed


Diets high in methionine lead to elevation of plasma homocysteine levels which are possibly linked to neurodegenerative diseases and oxidative stress. In the present study, we investigated the effects of methionine-enriched diet on antioxidant defences, on rat spontaneous behaviour and on the ability to sustain long-term potentiation in the dentate gyrus (DG). Sprague-Dawley rats were fed either a standard laboratory diet or a methionine enriched-diet (1% or 5% methionine in drinking water) for 8 weeks. After the 8 weeks, the animals were tested for spontaneous motor activity and habituation in an open field maze, for anxiety-like behaviour in an elevated plus maze and for the ability to sustain long-term potentiation (LTP) induced in the dentate gyrus under urethane anaesthesia. The brains were then removed and histochemically stained for superoxide dismutase (SOD) activity. Rats fed on 5% methionine significantly reduced total distance travelled during the open field test and exhibited no habituation with respect to the other two groups. Rats fed on 5% methionine also showed a significant increase of the anxiety level. Moreover, in this group, the ability to induce LTP in DG was impaired. SOD activity was significantly increased in the cerebral cortex of the rats fed on 1% and 5% methionine with respect to the control group. In conclusion, 5% methionine in drinking water led to evident impairment of locomotor skills and of synaptic plasticity. SOD activity in the cortex was increased in both the groups fed on 1% and 5% methionine, thus suggesting that metabolic adjustments, triggered by the methionine-enriched diet, are likely mediated by reactive oxygen species.

Download full-text


Available from: Marcellino Monda
  • Source
    • "Studies have shown a relation between oxidative stress and anxiety in animals exposed special diet or stress. Rats fed with a methionine enriched-diet presented increased levels of anxiety evaluated in an elevated plus maze test and increased superoxide dismutase (SOD) activity in the cerebral cortex when compared to controls [42]. Another study suggested that the highly palatable diet (enriched with sucrose) intake led to an obese phenotype, increased protein oxidation in frontal cortex and appeared to induce anxiety-like behavior in rats [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The oxidative imbalance appears to have an important role in anxiety development. Studies in both humans and animals have shown a strong correlation between anxiety and oxidative stress. In humans, for example, the increased malondialdehyde levels and discrepancies in antioxidant enzymes in erythrocytes have been observed. In animals, several studies also show that anxiety-like behavior is related to the oxidative imbalance. Moreover, anxiety-like behavior can be caused by pharmacological-induced oxidative stress. Studies using knockout or overexpression of antioxidant enzymes have shown a relationship between anxiety-like behavior and oxidative stress. Related factors of oxidative stress that could influence anxious behavior are revised, including impaired function of different mitochondrial proteins, inflammatory cytokines, and neurotrophic factors. It has been suggested that a therapy specifically focus in reducing reactive species production may have a beneficial effect in reducing anxiety. However, the neurobiological pathways underlying the effect of oxidative stress on anxiety symptoms are not fully comprehended. The challenge now is to identify the oxidative stress mechanisms likely to be involved in the induction of anxiety symptoms. Understanding these pathways could help to clarify the neurobiology of the anxiety disorder and provide tools for new discovery in therapies and preventive strategies.
    Full-text · Article · Mar 2014 · Current Neuropharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. Recent advances: This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. Critical issues: Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). Future directions: Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.
    Full-text · Article · Jan 2014 · Antioxidants & Redox Signaling
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery.
    Full-text · Article · May 2015 · PLoS ONE