Brain Meets Body: The Blood-Brain Barrier as an Endocrine Interface

ArticleinEndocrinology 153(9):4111-9 · July 2012with27 Reads
DOI: 10.1210/en.2012-1435 · Source: PubMed
Abstract
The blood-brain barrier (BBB) separates the central nervous system (CNS) from the peripheral tissues. However, this does not prevent hormones from entering the brain, but shifts the main control of entry to the BBB. In general, steroid hormones cross the BBB by transmembrane diffusion, a nonsaturable process resulting in brain levels that reflect blood levels, whereas thyroid hormones and many peptides and regulatory proteins cross using transporters, a saturable process resulting in brain levels that reflect blood levels and transporter characteristics. Protein binding, brain-to-blood transport, and pharmacokinetics modulate BBB penetration. Some hormones have the opposite effect within the CNS than they do in the periphery, suggesting that these hormones cross the BBB to act as their own counterregulators. The cells making up the BBB are also endocrine like, both responding to circulating substances and secreting substances into the circulation and CNS. By dividing a hormone's receptors into central and peripheral pools, the former of which may not be part of the hormone's negative feed back loop, the BBB fosters the development of variable hormone resistance syndromes, as exemplified by evidence that altered insulin action in the CNS can contribute to Alzheimer's disease. In summary, the BBB acts as a regulatory interface in an endocrine-like, humoral-based communication between the CNS and peripheral tissues.
    • "However, under stress, mast cells release mediators that increase vascular permeability near the brain vessels allowing BBB penetration by substances with high molecular weight penetrate the BBB[50]. Thus, peptides and regulatory protein hormones penetrate the BBB by both saturable and nonsaturable mechanisms[51]. The synergistic effect of exogenous CRH with colorectal distention (interoceptive stress) on the amygdala in controls can be explained by considering the BBB as an endocrine interface. Stress is known to induce CRH release, resulting in pituitary secretion of ACTH and cortisol secretion from the adrenocortex[8,10]. "
    [Show abstract] [Hide abstract] ABSTRACT: Irritable bowel syndrome (IBS) often comorbids mood and anxiety disorders. Corticotropin-releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis, but it is not clear how CRH agonists change human brain responses to interoceptive stimuli. We tested the hypothesis that brain activation in response to colorectal distention is enhanced after CRH injection in IBS patients compared to healthy controls. Brain H215O- positron emission tomography (PET) was performed in 16 male IBS patients and 16 age-matched male controls during baseline, no distention, mild and intense distention of the colorectum using barostat bag inflation. Either CRH (2 μg/kg) or saline (1:1) was then injected intravenously and the same distention protocol was repeated. Plasma adrenocorticotropic hormone (ACTH), serum cortisol and plasma noradrenaline levels were measured at each stimulation. At baseline, CRH without colorectal distention induced more activation in the right amygdala in IBS patients than in controls. During intense distention after CRH injection, controls showed significantly greater activation than IBS patients in the right amygdala. Plasma ACTH and serum cortisol secretion showed a significant interaction between drug (CRH, saline) and distention. Plasma noradrenaline at baseline significantly increased after CRH injection compared to before injection in IBS. Further, plasma noradrenaline showed a significant group (IBS, controls) by drug by distention interaction. Exogenous CRH differentially sensitizes brain regions of the emotional-arousal circuitry within the visceral pain matrix to colorectal distention and synergetic activation of noradrenergic function in IBS patients and healthy individuals.
    Full-text · Article · Jul 2016
    • "There is a growing literature on the relative importance of BCRP at the human BBB[8,9]. Although BCRP substrate specificity differs from P-gp and MRPs, there is substantial overlap[9][10][11][12][13]. While ABC transporters are neuroprotective when they deny entry of neurotoxic compounds into brain, they are also obstacles to CNS drug delivery. "
    [Show abstract] [Hide abstract] ABSTRACT: While the blood-brain barrier (BBB) protects the brain by controlling the access of solutes and toxic substances to brain, it also limits drug entry to treat central nervous system disorders. Many drugs are substrates for ATP-binding cassette (ABC) transporters at the BBB that limit their entry into the brain. The role of those transporters in limiting the entry of the widely prescribed therapeutic, benzylpenicillin, has produced conflicting results. This study investigated the possible potential involvement of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), two ABC transporters, in benzylpenicillin transport at BBB in human using MDCKII cells overexpressing those transporters as well as pharmacological inhibition. MDCKII cells overexpressing human BCRP (MDCKII-BCRP) but not those overexpressing human P-gp (MDCKII-MDR cells) had reduced [3H]benzylpenicillin uptake. Similarly, inhibiting BCRP increased [3H]benzylpenicillin uptake in MDCKII-BCRP cells, while inhibiting P-gp in MDCKII-MDR cells had no effect on uptake although there was evidence that benzylpenicillin is a substrate for canine P-gp. While inhibiting BCRP affected [3H]benzylpenicillin cell concentrations it did not affect transepithelial flux in MDCKII-BCRP cells. In summary, the results indicate that human BCRP and not human P-gp is involved in benzylpenicillin transport. However, targeting BCRP alone was not sufficient to alter transepithelial flux in MDCKII cells. Whether it would be sufficient to alter blood-to-brain flux at the human BBB remains to be investigated.
    Full-text · Article · Jun 2016
    • "Therefore, the contribution of peripheral steroids to the steroid milieu in the CNS is important and alterations in the peripheral steroidogenesis may influence neuronal activity in the brain. Although the steroid transport between the brain and periphery may be slowed by globulin binding, the steroid– globulin complex decreases the steroid clearance and has little influence on the total steroid amount transported to the brain [19] [24]. In spite of the substantially higher circulating levels of steroid sulfates when compared to their unconjugated counterparts , the levels of sulfated steroids in brain tissues are lower when compared with their unconjugated analogues [13] [18] [26] most probably due to their less polarity and the efflux transport via organic anion transporting polypeptide. "
    [Show abstract] [Hide abstract] ABSTRACT: Alzheimer's disease (AD) represents more than half of total dementias. Various factors including altered steroid biosynthesis may participate in its pathophysiology. We investigated how the circulating steroids (measured by GC-MS and RIA) may be altered in the presence of AD. Sixteen women with AD and 22 age- and BMI-corresponding controls aged over 65 years were enrolled in the study. The steroid levels (47 steroids and steroid polar conjugates) and their ratios in AD female patients indicated increased CYP11A1 activity, weakened activity of the CYP17A1C17,20 lyase metabolic step and attenuated sulfotransferase SULT2A1 activity at higher activity of the CYP17A1 17-hydroxylase step. The patients showed diminished HSD3B2 activity for C21 steroids, abated conversion of 17-hydroxyprogesterone to cortisol, and significantly elevated cortisol. The women with AD had also attenuated steroid 7α-hydroxylation forming immunoprotective Δ(5)-C19 steroids, attenuated aromatase activity forming estradiol that induces autoimmunity and a shift from the 3β-hydroxy-5α/β-reduced C19 steroids to their neuroinhibitory and antiinflammatory GABAergic 3α-hydroxy- counterparts and showed higher levels of the 3α-hydroxy-5α/β-reduced C21 steroids and pregnenolone sulfate (improves cognitive abilities but may be both protective and excitotoxic). Our preliminary data indicated functioning of alternative "backdoor" pathway in women with AD showing higher levels of both 5α/β-reduced C21 steroids but reduced levels of both 5α/β-reduced C21 steroids, which implied that the alternative "backdoor" pathway might include both 5α- and 5β-reduced steroids. Our study suggested relationships between AD status in women based on the age of subjects and levels of 10 steroids measured by GC-MS.
    Full-text · Article · Dec 2015
    • "We observed high levels of both adiposity and insulin in WD- DIO rats at 90 days, which were associated with NaFl accumulation as well as response strategy preference. Insulin has been known to regulate brain endothelial cells; during states of central insulin resistance, the BBB is damaged (Banks, 2012 ). The functional consequences of this are severe; for instance, Alzheimer disease is so strongly associated with central insulin resistance that it has been ascribed the moniker " type 3 diabetes " (De la Monte, 2009). "
    [Show abstract] [Hide abstract] ABSTRACT: Western diet (WD) intake induces obesity and metabolic dysfunction. The present study examined the effects of WD on hippocampal-dependent cognitive functioning and blood-brain barrier (BBB) permeability as a function of exposure duration, obesity phenotype, and peripheral markers of energy regulation. The use of hippocampal-dependent "place" or hippocampal-independent "response" strategies in a Y maze was assessed in male rats following 10, 40, and 90 days of WD exposure in diet-induced obese (DIO) rats, in diet resistant (DR) rats that are relatively insensitive to the obesogenic properties of WD, and in chow-fed controls. Insulin, glucose, and BBB permeability throughout several loci in the hippocampus, striatum, and cerebellum were evaluated in relation to duration of WD exposure, obesity phenotype, and type of strategy used. DIO rats had increased body weight and adiposity throughout the study, and elevated 10-day glucose and 90-day insulin levels. Throughout the study, chow-fed and DR rats reliably relied on a place strategy. DIO rats, in contrast, favored a response strategy at the 10- and 90-day time points. BBB leakage was observed in the dorsal striatum and multiple subregions of the hippocampus of DIO, but not DR or chow-fed rats. Increased ventral hippocampal BBB permeability and blood glucose levels were associated with reduced place strategy use. These data indicate that WD-induced BBB leakage is dependent on duration of diet exposure as well as obesity phenotype, and implicates BBB leakage and impaired glucoregulation in behavioral strategy and cognitive performance. (PsycINFO Database Record
    Full-text · Article · Nov 2015
    • "They are indeed small molecules that easily cross the blood–brain-barrier by transmembrane diffusion. Moreover, they rapidly diffuse throughout the nervous tissues because of their low molecular weight and their physicochemical lipid solubility [52,53]. An additional important feature of progesterone is its qualification as a multifunctional molecule, which means that it acts in a concerted manner on multiple targets. "
    [Show abstract] [Hide abstract] ABSTRACT: Since the first pioneering studies in the 1990s, a large number of experimental animal studies have demonstrated the neuroprotective efficacy of progesterone for brain disorders, including traumatic brain injury (TBI). In addition, this steroid has major assets: it easily crosses the blood-brain-barrier, rapidly diffuses throughout the brain and exerts multiple beneficial effects by acting on many molecular and cellular targets. Moreover, progesterone therapies are well tolerated. Notably, increased brain levels of progesterone are part of endogenous neuroprotective responses to injury. The hormone thus emerged as a particularly promising protective candidate for TBI and stroke patients. The positive outcomes of small Phase 2 trials aimed at testing the safety and potential protective efficacy of progesterone in TBI patients then provided support and guidance for two large, multicenter, randomized and placebo-controlled Phase 3 trials, with more than 2000 TBI patients enrolled. The negative outcomes of both trials, named ProTECT III and SyNAPSE, came as a big disappointment. If these trials were successful, progesterone would have become the first efficient neuroprotective drug for brain-injured patients. Thus, progesterone has joined the numerous neuroprotective candidates that have failed in clinical trials. The aim of this review is a reappraisal of the preclinical animal studies, which provided the proof of concept for the clinical trials, and we critically examine the design of the clinical studies. We made efforts to present a balanced view of the strengths and limitations of the translational studies and of some serious issues with the clinical trials. We place particular emphasis on the translational value of animal studies and the relevance of TBI biomarkers. The probability of failure of ProTECT III and SyNAPSE was very high, and we present them within the broader context of other unsuccessful trials.
    Full-text · Article · Nov 2015
    • "They are indeed small molecules that easily cross the blood–brain-barrier by transmembrane diffusion. Moreover, they rapidly diffuse throughout the nervous tissues because of their low molecular weight and their physicochemical lipid solubility [52,53]. An additional important feature of progesterone is its qualification as a multifunctional molecule, which means that it acts in a concerted manner on multiple targets. "
    [Show abstract] [Hide abstract] ABSTRACT: Levels of steroids in the adult central nervous system (CNS) show marked changes in response to stress, degenerative disorders and injury. However, their analysis in complex matrices such as fatty brain and spinal cord tissues, and even in plasma, requires accurate and precise analytical methods. Radioimmunoassays (RIA) and enzyme-linked immunosorbent assays, even with prepurification steps, do not provide sufficient specificity, and they are at the origin of many inconsistent results in the literature. The analysis of steroids by mass spectrometric methods has become the gold standard for accurate and sensitive steroid analysis. However, these technologies involve multiple purification steps prone to errors, and they only provide accurate reference values when combined with careful sample workup. In addition, the interpretation of changes in CNS steroid levels is not an easy task because of their multiple sources: the endocrine glands and the local synthesis by neural cells. In the CNS, decreased steroid levels may reflect alterations of their biosynthesis, as observed in the case of chronic stress, post-traumatic stress disorders or depressive episodes. In such cases, return to normalization by administering exogenous hormones or by stimulating their endogenous production may have beneficial effects. On the other hand, increases in CNS steroids in response to acute stress, degenerative processes or injury may be part of endogenous protective or rescue programs, contributing to the resistance of neural cells to stress and insults. The aim of this review is to encourage a more critical reading of the literature reporting steroid measures, and to draw attention to the absolute need for well-validated methods. We discuss reported findings concerning changing steroid levels in the nervous system by insisting on methodological issues. An important message is that even recent mass spectrometric methods have their limits, and they only become reliable tools if combined with careful sample preparation. Copyright © 2015. Published by Elsevier Inc.
    Full-text · Article · Aug 2015
Show more