A numerical method for optimizing the local control of sound in a stochastic domain is developed. A three-dimensional enclosed acoustic space, for example, a cabin with acoustic actuators in given locations is modeled using the nite element method in the frequency domain. The optimal local noise control signals minimizing the least square of the pres-sure eld in the silent region are given by the
... [Show full abstract] solution of a quadratic opti-mization problem. The developed method computes a robust local noise control in the presence of randomly varying parameters such as variations in the acoustic space. Numerical examples consider the noise experienced by a vehicle driver with a varying posture. In a model problem, a signi-cant noise reduction is demonstrated at lower frequencies.