ArticlePDF Available

A new classification and linear sequence of extant gymnosperms



A new classification and linear sequence of the gymnosperms based on previous molecular and morphological phylogenetic and other studies is presented. Currently accepted genera are listed for each family and arranged according to their (probable) phylogenetic position. A full synonymy is provided, and types are listed for accepted genera. An index to genera assists in easy access to synonymy and family placement of genera.
Accepted by M. Fay: 5 Nov. 2010; published: 18 Feb. 2011 55
ISSN 1179-3155 (print edition)
ISSN 1179-3163 (online edition)
Copyright © 2011 Magnolia Press
Phytotaxa 19: 5570 (2011)
A new classification and linear sequence of extant gymnosperms
1Botanical Garden and Herbarium, Finnish Museum of Natural History, Unioninkatu 44, University of Helsinki, 00014 Helsinki,
Finland. E-mail:
2L. H. Bailey Hortorium, Department of Plant Biology, 412 Mann Building, Cornell University, Ithaca, NY 14853-4301, U.S.A.
3Herbarium, Library, Art & Archives, Royal Botanic Gardens, Kew, Richmond, Surrey, England, TW9 3AB, U.K.
4Royal Botanic Garden Edingurgh, 20A Inverleith Row, Edinburgh, EH3 5LR,Scotland, U.K.
5Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England, TW9 3DS, U.K.
A new classification and linear sequence of the gymnosperms based on previous molecular and morphological
phylogenetic and other studies is presented. Currently accepted genera are listed for each family and arranged according
to their (probable) phylogenetic position. A full synonymy is provided, and types are listed for accepted genera. An index
to genera assists in easy access to synonymy and family placement of genera.
Gymnosperms are seed plants with an ovule that is not enclosed in a carpel, as is the case in angiosperms. The
ovule instead forms on a leaf-like structure (perhaps homologous to a leaf), or on a scale or megasporophyll
(homologous to a shoot) or on the apex of a (dwarf) shoot. Megasporophylls are frequently aggregated into
compound structures that are often cone-shaped, hence the colloquial name for some of the group: conifers.
Homologies of the ovuliferous structures as yet are not entirely resolved. Seeds of gymnosperms may be
enclosed at maturity by fused cone scales or bracts, which are sometimes fleshy causing the fruiting structures
(cones) to be confused with berries (e.g. juniper “berries”). In spite of their often slow rates of growth and
long periods between pollination and seed maturity, gymnosperms can be dominant in some areas. Some
extant cycads and gnetophytes are entirely or primarily insect pollinated, whereas Ginkgo and all conifers are
wind pollinated. Only a few species are known to be polyploid, and no species are reported to be
allopolyploid. Extant gymnosperms are not numerous. There are about 1026 species in all: the three ‘non-
conifer’ groups comprise ca 310 species of cycads in 10 genera, one extant ginkgophyte and 80–100
gnetophytes in three genera; according to Farjon (2010) there are a total of ca 615 species of conifers in 70
accepted genera.
Hori et al. (1985) were the first to find that extant gymnosperms were sister to the angiosperms, but they
included only three genera, Cycas, Ginkgo and Metasequoia, so this was not considered a particularly good
evaluation of the topic. Troitsky et al. (1991) used ribosomal RNA and also found extant gymnosperms to be
monophyletic, but they too sampled taxa thinly; although a total of 11 genera were used (three cycads, two
gnetophytes, Ginkgo and five conifers), and only up to six genera from the whole set were included in each
analysis. Likewise, Hasebe et al. (1992) used plastid rbcL sequences on a small set of taxa and similarly found
extant gymnosperms to be monophyletic. The first broadly sampled molecular phylogenetic study to examine
gymnosperm relationships was that of Chaw et al. (1997), and like the other studies they found extant
gymnosperms to be sister to the angiosperms. Chase et al. (1993) assumed that the sister group relationship of
56 Phytotaxa 19 © 2011 Magnolia Press
gymnosperms and angiosperms in these earlier studies was spurious and perhaps due to insufficient taxon-
sampling and/or long-branch attraction, so they assigned the cycads the position of sister to the rest. However,
molecular studies have continued to demonstrate monophyly for both groups of extant seed plants (Ran et al.
Although the extant taxa are clearly monophyletic, their relationships to the numerous and diverse groups
of fossil gymnosperms remain obscure and incompletely understood. We have not provided a formal name for
the clade composed of the extant taxa; we may never know their relationships to all groups of fossil
gymnosperms, which makes it difficult to know how to classify all groups of gymnosperms, living and
extinct, so we have avoided this problem by simply naming only the four extant subclades. Thus, we
recognise each of the four extant groups as subclasses of class Equisetopsida (as in Chase & Reveal 2009).
This view differs from those favoured by other workers who have separated cycads, Ginkgo, gnetophytes and
conifers as a whole, or even individual groups within conifers such as pines, Araucariaceae + Cupressaceae,
Taxaceae and Podocarpaceae, individual classes, namely Cycadopsida Brongn., Ginkgoopsida Engl.,
Gnetopsida Eichler ex Kirpotenko, Pinopsida Burnett (Coniferopsida), Araucariopsida A.V.Bobrov &
Melikian, Taxopsida Lotsy and Podocarpopsida Doweld & Reveal (cf. Sporne 1965, Bierhorst 1971, Doweld
& Reveal 1999, Melikian & Bobrov 2000, Bobrov & Melikian 2006).
Traditionally the cycads, Ginkgo, and Araucariaceae have been considered 'primitive' in the sense that
they each have a long fossil history extending back to the Permian (cycads) or Jurassic, and extant members of
these three groups resemble the fossils (e.g. Passalia et al. 2010, Sun et al. 2008, Kunzmann 2007), although
in each case the extant taxonomic diversity is less than in the past. Gnetidae were often considered as the sister
group of angiosperms (Chase et al. 1993), and Gnetum L. indeed resembles an angiosperm in general habit.
For this reason, Araucariaceae were often placed at the beginning of gymnosperms, whereas Gnetidae were
placed at the end. Of course, retention of plesiomorphic characters is not necessarily reflected in molecular
phylogenetic trees. Early branching groups may have evolved many apomorphic characters, whereas later
branching groups may have retained plesiomorphic characters. This is especially the case in ancient groups
where many lineages have become extinct, such as lycophytes, ferns, gymnosperms and magnoliids.
The exact position of Gnetidae with respect to the other subclades of extant gymnosperms has been
problematic and controversial, particularly in light of studies that indicated them to be embedded in the
conifer clade as sister to Pinaceae (the so-called gnepine hypothesis: Qiu et al. 1999). Burleigh & Mathews
(2004) conducted a long series of experiments that looked at phylogenetic signals in nucleotide positions that
varied at different rates in genes from all three genomic compartments, and they found no consistency of
position for Gnetidae. Other studies have found Gnetidae as sister to all other extant seed plants (Rydin et al.
2002), but this does not fit the fossil record in a stratigraphic sense. Morphologically, a close relationship
between Gnetidae and either Pinaceae (gnepine hypothesis) or all conifers (gnetifer hypothesis) seems
unlikely, but there have been suggestions in the literature that presaged this molecular result (Bailey 1944,
Eames 1952). The basic conclusion of Burleigh & Mathews was that it is difficult to use molecular data to
evaluate this question, but the most consistent and perhaps reasonable result supports the gnepine hypothesis.
Recently, Braukmann et al. (2010) found a large number of structural alterations of the plastid genome that are
shared by all conifers and Gnetidae, and in particular Gnetidae and Pinaceae uniquely share the loss of all ndh
genes in their plastid genomes, which also supports the gnepine relationship. If this relationship continues to
gain support, then we would advocate naming of the non-Pinaceae conifers as a new subclass rather than
including Gnetidae in Pinidae.
Linear representations of phylogenetic classifications are particularly useful as tools to arrange plant
material systematically in herbaria. A linear classification of the angiosperms, primarily for that purpose, was
devised according to APG II by Haston et al. (2007), and this was updated according to APG III by Haston et
al. (2009). We here present an analogous linear classification of the extant gymnosperms. Presentation differs
from the two papers of Haston et al. (2007, 2009) in that our classification includes genera as well as families,
and it includes all known synonyms at the ranks of subclass, order, family and genus. For this linear
classification we have followed recent phylogenetic results published by Chaw et al. (1997, 2000), Ran et al.
Phytotaxa 19 © 2011 Magnolia Press 57
(2010), and other authors as cited under individual entries. Furthermore, we have placed genera that were not
sampled where we think they probably belong. For each name we have indicated its nomenclatural type by
“T.” followed by the type the taxon name. An alphabetical index to genera is given in Appendix 1.
Linear sequence of extant gymnosperms and bibliography
SUBCLASS I. CYCADIDAE Pax in K.A.E.Prantl, Lehrb. Bot. ed. 9: 203 (1894).—T.: Cycadaceae.
Zamiidae Doweld, Tent. Syst. Pl. Vasc.: xv (2001).—T.: Zamiaceae.
ORDER A. CYCADALES Pers. ex Bercht. & J.Presl, Pir. Rostlin: 262 (1820).—T.: Cycadaceae.
Zamiales Burnett, Outl. Bot.: 490 (1835).—T.: Zamiaceae.
Stangeriales Doweld, Tent. Syst. Pl. Vasc.: xv (2001).—T.: Stangeriaceae.
Family 1. Cycadaceae Pers., Syn. Pl. 2: 630 (1807), nom. cons.—T.: Cycas L.
1 genus, ca 107 species, East Africa to Japan and Australia.
1.1. Cycas L., Sp. Pl. 2: 1188 (1753).—T.: C. circinalis L.
Todda-Pana Adans., Fam. 2: 25. (1763), nom. illeg. by typification.—T.: Cycas circinalis L.
Dyerocycas Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.] 208 (1943).—T.: D. micholitzii (Dyer) Nakai (
Cycas micholitzii Dyer).
Epicycas de Laub. in D.J. de Laubenfels & F.A.C.B. Adema, Blumea 43: 388 (1998), nom. illeg.—T.: E. micholitzii
(Dyer) de Laub. ( Cycas micholitzii Dyer).
Family 2. Zamiaceae Horan., Prim. Lin. Syst. Nat.: 45 (1834).—T.: Zamia L.
9 genera, ca 206 species, tropical and subtropical Africa, Australia and America. The phylogenetic tree
followed here is that of Zgurski et al. (2008).
Encephalartaceae Schimp. & Schenk in K.A. Zittel, Handb. Palaeontol., Palaeophyt. 2: 215 (1880).—T: Encephalartos
Stangeriaceae Schimp. & Schenk in K.A. Zittel, Handb. Palaeontol., Palaeophyt.: 216 (1880).—T.: Stangeria T.Moore
Boweniaceae D.W.Stev., Amer. J. Bot. 68: 1114 (1981).—T.: Bowenia Hook.f.
Dioaceae Doweld, Tent. Syst. Pl. Vasc.: xv. ( 2001).—T.: Dioon Lindl.
Microcycadaceae Tarbaeva, Anat.-Morf. Str. Sem. Cycad.: 19 (1991).—T: Microcycas (Miq.) A.DC.
2.1. Dioon Lindl., Edwards's Bot. Reg. 29 (Misc.): 59 (1843), as 'Dion', nom. et orth. cons.—T.: D. edule
Platyzamia Zucc., Abh. Math.-Phys. Cl. Königl. Bayer. Akad. Wiss. 4(2): 23 (1845).—T.: P. rigida Zucc.
2.2. Bowenia Hook.f., Bot. Mag. 89: ad t. 5398 (1863).—T.: B. spectabilis Hook.f.
2.3. Macrozamia Miq., Monogr. Cycad. 35 (1842).—T.: M. spiralis (Salisb.) Miq. ( Zamia spiralis Salisb.)
2.4. Lepidozamia Regel, Bull. Soc. Imp. Naturalistes Moscou 30: 182 (1857).—T.: L. peroffskyana Regel.
Catakidozamia W.Hill, Gard. Chron. 1865: 1107 (1865).—T.: C. hopei W.Hill
2.5. Encephalartos Lehm., Nov. Stirp Pug. 6: 3 (1834).—T.: E. caffer (Thunb.) Lehm. ( Cycas caffra
2.6. Stangeria T.Moore, Hooker's J. Bot. Kew Gard. Misc. 5: 228 (1853).—T.: S. paradoxa T.Moore
2.7. Ceratozamia Brongn., Ann. Sci. Nat. Bot., ser. 3, 5: 7 (1846).—T.: C. mexicana Brongn.
2.8. Microcycas (Miq.) A.DC., Prodr. 16: 538 (1868).—T.: M. calocoma (Miq.) A.DC. ( Zamia calocoma
2.9. Zamia L., Sp. Pl., ed. 2, 2: 1659 (1763), nom. cons.—T.: Z. pumila L.
Palma-Filix Adans., Fam. 2: 21, 587 (1763), nom. rej.
Aulacophyllum Regel, Gartenflora 25: 140 (1876).—T.: A. skinneri (Warsz.) Regel ( Zamia skinneri Warsz.)
Palmifolium Kuntze, Rev. Gen. 2: 803 (1891), nom. illeg. ( Palma-Filix Adans., nom. rej. Zamia L., nom. cons.)
Chigua D.W.Stev., Mem. New York Bot. Gard. 57: 170 (1990).—T.: C. restrepoi D.W.Stev. ( Zamia restrepoi
(D.W.Stev.) A.J.Lindstr.), see Lindstrom (2009).
58 Phytotaxa 19 © 2011 Magnolia Press
SUBCLASS II. GINKGOIDAE Engl. in H.G.A. Engler & K.A.E. Prantl, Nat. Planzenfam. Nacht.: 341 (1897).—
T.: Ginkgoaceae.
ORDER B. GINKGOALES Gorozh., Lekts. Morf. Sist. Archegon.: 73 (1904).—T.: Ginkgoaceae.
Family 3. Ginkgoaceae Engl. in H.G.A. Engler & K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 19 (1897), nom.
cons.—T.: Ginkgo L.
1 genus, 1 extant species, China.
3.1. Ginkgo L., Mant. 2: 313 (1771).—T.: G. biloba L.
Salisburia Sm., Trans. Linn. Soc. London 3: 330 (1797), nom. illeg.—T.: S. adiantifolia Sm. ( Ginkgo biloba L.)
Pterophyllus J.Nelson, Pinaceae: 163 (1866), nom. illeg., non Lév. (1844, Agaricaceae).—T.: P. salisburiensis J.Nelson,
nom. illeg. ( Ginkgo biloba L.)
SUBCLASS III. GNETIDAE Pax in K.A.E. Prantl, Lehrb. Bot., ed. 9: 203 (1894).—T.: Gnetaceae.
Ephedridae Cronquist, Takht. & Zimmerm. ex Reveal, Phytologia 79: 69 (1996).—T.: Ephedraceae.
Welwitschiidae Cronquist, Takht. & Zimmerm. ex Reveal, Phytologia 79: 71 (1996).—T.: Welwitschiaceae.
ORDER C. WELWITSCHIALES Skottsb. ex Reveal, Phytologia 74: 174 (1993).—T.: Welwitschiaceae.
Family 4. Welwitschiaceae Caruel, Nuovo Giorn. Bot. Ital. 11: 16 (1879), nom. cons.—T.: Welwitschia
Tumboaceae Wettst., Handb. Syst. Bot. 2(1): 158 (1903).—T: Tumboa Welw., nom. rej. ( Welwitschia Hook.f., nom.
1 genus, 1 species, Namibia, Angola.
4.1. Welwitschia Hook.f., Gard. Chron. 1862: 71 (1862), nom. cons.—T.: W. mirabilis Hook.f.
Tumboa Welw., Gard. Chron. 1861: 75. (1861), nom. rej.
ORDER D. GNETALES Blume in C.F.P. von Martius, Consp. Regn. Veg.: 11 (1835).—T.: Gnetaceae.
Family 5. Gnetaceae Blume, Nov. Pl. Expos.: 23 (1833), nom. cons.—T.: Gnetum L.
Thoaceae Kuntze in T.E. von Post & C.E.O. Kuntze, Lex. Gen. Phan.: 615 (1903).—T.: Thoa Aubl.
1 genus, 30 species, India, Malesia, tropical West Africa, Amazonian South America.
5.1. Gnetum L., Syst. Nat., ed. 12, 2: 637; Mant. 1: 18, 125 (1767).—T.: G. gnemon L.
Thoa Aubl., Hist. Pl. Guiane: 874 (1775).—T.: T. urens Aubl.
Abutua Lour., Fl. Cochinch.: 630 (1790).—T.: A. indica Lour.
Gnemon [Rumpf ex] Kuntze, Rev. Gen. 2: 796 (1891), nom. illeg.—T.: G. ovalifolia O.Kuntze ( Gnetum gnemon L.)
ORDER E. EPHEDRALES Dumort., Anal. Fam. Pl.: 11 (1829).—T.: Ephedraceae.
Family 6. Ephedraceae Dumort., Anal. Fam. Pl.: 11 (1829), nom. cons.—T.: Ephedra L.
1 genus, ca 40 species, Mediterranean Europe, North Africa, warm temperate Asia, North America and
western South America.
6.1 Ephedra L., Sp. Pl. 2: 1040 (1753).—T.: E. distachya L.
Chaetocladus J.Nelson, Pinaceae: 161 (1866), nom. illeg.—T.: C. distachyus (L.) J.Nelson (as distachys’) Ephedra
distachya L.
SUBCLASS IV. PINIDAE Cronquist, Takht. & Zimmerm., Taxon 15: 134 (1966).—T.: Pinaceae.
Taxidae Ehrend. ex Reveal, Phytologia 79: 71 (1996).—T.: Taxaceae.
Podocarpidae Doweld & Reveal, Phytologia 84: 366 (1999).—T.: Podocarpaceae.
Phytotaxa 19 © 2011 Magnolia Press 59
Araucariidae Doweld, Tent. Syst. Pl. Vasc.: xx (2001).—T.: Araucariaceae.
Cupressidae Doweld, Tent. Syst. Pl. Vasc.: xix (2001).—T.: Cupressaceae.
Note: —The name ‘Coniferales’ has been used for this clade but it is not based on an existing genus. The
use of names based on ‘Conifer-’ (e.g. Coniferopsida, Coniferidae, Coniferales etc.) should be avoided.
ORDER F. PINALES Gorozh., Lekts. Morf. Sist. Archegon.: 88 (1904).—T.: Pinaceae.
Abietales Link, Handbuch 2: 474 (1829).—T.: Abietaceae.
Family 7. Pinaceae Spreng. ex F.Rudolphi, Syst. Orb. Veg.: 35 (1830), nom. cons.—T.: Pinus L.
Cedraceae Vest, Anleit. Stud. Bot.: 265, 280. 1818.—T.: Cedrus Trew
Abietaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 223. (1822), nom. cons.—T.: Abies Mill.
Piceaceae Gorozh., Lekts. Morf. Sist. Archegon.: 79. (1904).—T: Picea A.Dietr.
11 genera, ca 225 species, Temperate to tropical Eurasia, Sumatra, Philippines, North America south to
Nicaragua, West Indies. The phylogenetic tree published by Liston et al. (2003) has been used to create this
7.1. Cedrus Trew, Cedr. Lib. Hist., Apol. Mant. 1: 6 (1757), nom. cons., non Duhamel (1755, nom. rej.), non
Mill. (1757, = Cedrela P.Browne, Meliaceae).—T.: C. libani A.Rich. ( Pinus cedrus L.)
7.2. Pinus L., Sp. Pl. 2: 1000 (1753).—T.: P. sylvestris L.
Pinea Wolf, Gen. Pl.: 156 (1776).—T.: not designated.
Strobus (Sweet ex Spach) Opiz, Lotos 4: 94 (1854).—T.: S. weymouthiana Opiz ( Pinus strobus L.)
Caryopitys Small, Fl. S.E. U.S.: 29 (1903).—T.: C. edulis (Engelm.) Small ( Pinus edulis Engelm.)
Apinus Neck. ex Rydb., Bull. Torrey Bot. Club 32: 597 (1905).—T.: Pinus cembra L.
Leucopitys Nieuwl., Amer. Midl. Naturalist 3: 69 (1913), nom. illeg. ( Strobus (Sweet ex Spach) Opiz)
Ducampopinus A.Chev., Rev. Int. Bot. Appl. Agric. Trop. 24: 30 (1944).—T.: D. krempfii (Lecomte) A.Chev. ( Pinus
krempfii Lecomte)
7.3. Cathaya Chun & Kuang, Acta Bot. Sin. 10: 245 (1962).—T.: C. argyrophylla Chun & Kuang
7.4. Picea A.Dietr., Fl. Berlin 1(2): 794 (1824).—T.: P. rubra A.Dietr., nom. illeg. ( Picea abies (L.)
H.Karst., Pinus abies L.)
Veitchia Lindl., Gard. Chron. 1861: 265 (1861) nom. rej. non Veitchia H.Wendl., (1868, Arecaceae), nom. cons.—T: V.
japonica Lindl. Note: —This is ambiguously synonymous with Picea; the identity of the type species is unknown.
7.5. Pseudotsuga Carr., Traité Conif., ed. 2: 256 (1867).—T.: P. douglasii (Sabine ex D.Don) Carr. ( Pinus
douglasii Sabine ex D.Don) [correct name P. menziesii (Mirb.) Franco]
Abietia A.H.Kent, Man. Conif., ed. 2: 474 (1900), nom. illeg.
7.6. Larix Mill., Gard. Dict. Abr., ed. 4: [unpaged.] (1754).—T.: L. decidua Mill. ( Pinus larix L.)
7.7. Pseudolarix Gordon, Pinetum: 292 (1858), nom. cons.—T.: P. kaempferi Gordon [correct name P.
amabilis (J.Nelson) Rehder]
Laricopsis A.H.Kent, Man. Conif., ed. 2: 403 (1900), nom. illeg., non Fontaine (1889).—T.: L. kaempferi (Gordon)
A.H.Kent ( Pseudolarix kaempferi Gordon)
Chrysolarix H.E.Moore, Baileya 13: 133 (1965).—T.: C. amabilis (J.Nelson) H.E.Moore ( Larix amabilis J.Nelson)
7.8. Tsuga (Endl.) Carr., Traité Conif.: 185 (1855).—T.: T. sieboldii Carr. ( Abies tsuga Siebold & Zucc.)
Hesperopeuce (Engelm.) Lemmon, Bienn. Rep. Calif. State Board Forest. 3: 126 (1890).—T.: H. pattoniana (J.Jeffrey ex
A.Murray) Lemmon ( Abies pattoniana J.Jeffrey ex A.Murray)
7.9. Nothotsuga Hu ex C.N.Page, Notes Roy. Bot. Gard. Edinburgh 45: 390 (1989).—T.: N. longibracteata
(W.C.Cheng) C.N.Page ( Tsuga longibracteata W.C.Cheng)
7.10. Keteleeria Carr., Rev. Hort. 37: 449 (1866).—T.: K. fortunei (A.Murray) Carr. ( Picea fortunei
A.Murr., as ‘fortuni’).
7.11. Abies Mill., Gard. Dict. Abr., ed. 4, vol. 1: [unpaged.] (1754).—T.: A. alba Mill. ( Pinus picea L.)
Picea D.Don ex Loud., Arbor. Frut. Brit. 4: 2329 (1838), nom. illeg., non A.Dietr. (1824).
60 Phytotaxa 19 © 2011 Magnolia Press
ORDER G. ARAUCARIALES Gorozh., Lekts. Morf. Sist. Archegon.: 72 (1904).—T.: Araucariaceae.
Podocarpales Pulle ex Reveal, Novon 2: 239 (1992).—T.: Podocarpaceae.
Saxegothaeales Doweld & Reveal, Phytologia 84: 365 (1999).—T.: Saxegothaeaceae.
Falcatifoliales Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 61 (2000).—T.: Falcatifoliaceae.
Parasitaxales Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 61 (2000).—T.: Parasitaxaceae
Microstrobales Melikian & A.V.Bobrov ex Doweld & Reveal, Novon 11: 396 (2001).—T.: Microstrobaceae.
Family 8. Araucariaceae Henkel & W.Hochst., Syn. Nadelhölz.: xvii, 1 (1865), nom. cons.—T.: Araucaria
Dammaraceae Link, Abh. Konigl. Akad. Wiss. Berlin 1827: 157 (1830), nom. illeg.—T.: Dammara Link.
Agathidaceae (Vierh.) Baum.-Bodenh. ex A.V.Bobrov & Melikian, Komarovia 4: 61 (2006).—T.: Agathis Salisb.
3 genera, 41 species, Southeast Asia and Philippines to Australasia, Pacific, southern South America.
8.1. Araucaria Juss., Gen. 413 (1789). T.: A. imbricata Pav., nom. illeg. ( Pinus araucana Molina)
Dombeya Lam., Encycl. Meth., Bot. 2: 301 (1786), nom. illeg., non L’Hér. (1785), nom. rej.—T.: D. chilensis Lam., nom.
illeg. ( Pinus araucana Molina)
Columbea Salisb., Trans. Linn. Soc. London 8: 317 (1807), nom. illeg.—T.: C. quadrifaria Salisb., nom. illeg. ( Pinus
araucana Molina)
Eutassa Salisb., Trans. Linn. Soc. London 8: 316 (1807).T.: E. heterophylla Salisb. (= Araucaria heterophylla).
Eutacta Link, Linnaea 15: 543 (1842).—T.: E. cunninghamii (Aiton ex A. Cunn.) Link (type designated here by Mill &
Farjon) (= Araucaria cunninghamii Aiton ex A.Cunn.).
Quadrifaria Manetti ex Gordon, Pinet. Suppl. 14 (1862).T.: Q. imbricata (Pav.) Manetti ex Gordon (= Araucaria
Marywildea A.V.Bobrov & Melikian, Komarovia 4: 57 (2006).—T.: M. bidwillii (Hook.) A.V.Bobrov & Melikian (
Araucaria bidwillii Hook.).
Titanodendron A.V.Bobrov & Melikian, Komarovia 4: 60 (2006).—T.: T. hunsteinii (K.Schum.) A.V.Bobrov & Melikian
( Araucaria hunsteinii K.Schum.).
8.2. Wollemia W.G.Jones, K.D.Hill & J.M.Allen, Telopea 6: 173 (1995).—T.: W. nobilis W.G.Jones,
K.D.Hill & J.M.Allen
8.3. Agathis Salisb., Trans. Linn. Soc. London 8: 311 (1807), nom. cons.—T.: A. loranthifolia Salisb., nom.
illeg. ( Pinus dammara (Lamb.) L.C.Rich.)
Dammara Link, Enum. Pl. Horti Berol. 2: 411 (1822), nom. illeg., non Gaertner (1790).
Salisburyodendron A.V.Bobrov & Melikian, Komarovia 4: 62 (2006).—T.: S. australis (Lamb.) A.V.Bobrov & Melikian
( Agathis australis Salisb.).
Family 9. Podocarpaceae Endl., Syn. Conif.: 203 (1847), nom. cons.—T.: Podocarpus L’Hér. ex Pers.
Phyllocladaceae Bessey, Nebraska Univ. Stud. 7: 325 (1907).—T.: Phyllocladus Rich. ex Mirb.
Phyllocladaceae E.L.Core ex H.Keng, Taiwania 18(2): 142 (1973), nom, illeg.—T.: Phyllocladus Rich. ex Mirb.
Pherosphaeraceae Nakai, Tyosen-Sanrin158: 15 (1938).—T: Pherosphaera W.Archer bis
Nageiaceae D.Z.Fu, Acta Phytotax. Sin. : 522 (1992).—T: Nageia Gaertn.
Acmopylaceae Melikian & A.V.Bobrov, Proc. Intern. Conf. Plant Anat. Morph. (St. Petersburg) 1997: 93 (1997).—T:
Acmopyle Pilg.
Saxegothaeaceae Gaussen ex Doweld & Reveal, Phytologia 84: 365. (1999).—T: Saxegothaea Lindl., nom. cons.
Microcachrydaceae Doweld & Reveal, Phytologia 84: 365 (1999).—T.: Microcachrys Hook.f.
Bracteocarpaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 60 (2000).—T: Bracteocarpus
Melikian & A.V.Bobrov
Dacrycarpaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 59 (2000).—T: Dacrycarpus de
Falcatifoliaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 61 (2000).—T: Falcatifolium de
Halocarpaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 60 (2000).—T: Halocarpus Quinn
Lepidothamnaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 63 (2000).—T: Lepidothamnus
Microstrobaceae Doweld & Reveal, Novon 11: 396 (2001).—T: Microstrobos J.Garden & L.A.S.Johnson
Parasitaxaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 61 (2000).—T: Parasitaxus de
Phytotaxa 19 © 2011 Magnolia Press 61
Prumnopityaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 58 (2000).—T: Prumnopitys Phil.
19 genera, ca 180 species, Tropical African mountains, Japan to Australia and New Zealand, SW Pacific,
South America, Central America, Caribbean Islands. Phylogenetic analyses followed here are those of Kelch
(1997, 1998), Conran et al. (2000) and Sinclair et al. (2002).
9.1. Phyllocladus Rich. ex Mirb., Mém. Mus. Hist. Nat. 13: 48 (1825), nom. cons.—T.: P. billardieri Mirb,
nom. illeg. ( Podocarpus aspleniifolius Labill.) [correct name: Phyllocladus aspleniifolius (Labill.)
Podocarpus Labill., Novae Holl. Pl. Spec. 2: 71, t. 221 (1806), nom. rej. ( Phyllocladus by typification)
Thalamia Spreng., Anleit., ed. 2, 2: 218 (1817), nom. illeg.—T.: T. aspleniifolia (Labill.) Spreng. ( Podocarpus
aspleniifolius Labill.)
Brownetera Rich. ex Tratt., Gen. Nov. Pl.: ad t. [14] (1825), nom. illeg. —T.: B. aspleniifolia (Labill.) Tratt. (
Podocarpus aspleniifolius Labill.)
9.2. Lepidothamnus Phil., Linnaea 30: 730 (1861).—T.: L. fonkii Phil.
9.3. Prumnopitys Phil., Linnaea 30: 731 (1861).—T.: P. elegans Phil. [correct name: P. andina (Poepp. ex
Endl.) de Laub.]
Stachycarpus (Endl.) Tiegh., Bull. Soc. Bot. France 38: 163 (1891).—T.: S. andinus (Poepp. ex Endl.) Tiegh., as ‘andina
( Prumnopitys andina (Poepp. ex Endl.) de Laub., Podocarpus andinus Poepp. ex Endl., as ‘andina’)
Stachypitys A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 58 (2000) nom. illeg., non Schenk
(1867, fossil).—T.: S. ferrugineus (G.Benn. ex D.Don) A.V.Bobrov & Melikian ( Prumnopitys ferruginea (G.Benn.
ex D.Don) de Laub., Podocarpus ferrugineus G.Benn. ex D.Don).
Van-Tieghemia A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 58 (2000) nom. illeg., non
Vantieghemia Kuntze (1891, fungus).—T.: V. montana (Humb. & Bonpl. ex Willd.) A.V.Bobrov & Melikian (
Prumnopitys montana (Humb. & Bonpl. ex Willd.) de Laub., Podocarpus montanus Humb. & Bonpl. ex Willd.).
Botryopitys Doweld, Turczaninowia 3(4): 37 (2001).—T.: B. montana (Humb. & Bonpl. ex Willd.) Doweld (
Prumnopitys montana (Humb. & Bonpl. ex Willd.) de Laub., Podocarpus montanus Humb. & Bonpl. ex Willd.).
Note:—Botryopitys is a new name coined by Doweld for the illegitimate name Van-Tieghemia A.V.Bobrov &
9.4. Sundacarpus (J.Buchholz & N.E.Gray) C.N.Page, Notes Roy. Bot. Gard. Edinburgh 45: 378 (1989).—
T.: S. amarus (Blume) C.N.Page ( Podocarpus amarus Blume, as ‘amara’)
9.5. Halocarpus Quinn, Austral. J. Bot. 30: 317 (1982).—T.: H. bidwillii (Hook.f. ex Kirk) Quinn (
Dacrydium bidwillii Hook.f. ex Kirk)
9.6. Parasitaxus de Laub., Fl. Nouv. Calédonie 4: 44 (1972).—T.: P. usta (Vieill.) de Laub., as ‘ustus’ (
Dacrydium ustum Vieill.)
9.7. Lagarostrobos Quinn, Austral. J. Bot. 30: 316 (1982).—T.: L. franklinii (Hook.f.) Quinn ( Dacrydium
franklinii Hook.f.)
9.8. Manoao Molloy, New Zealand J. Bot. 33: 196 (1995).—T.: M. colensoi (Hook.) Molloy ( Dacrydium
colensoi Hook.)
9.9. Saxegothaea Lindl., J. Hort. Soc. London 6: 258 (1851), as ‘Saxe-Gothaea,’ nom. & orth. cons.—T.: S.
conspicua Lindl.
Squamataxus J.Nelson, Pinaceae 168 (1866), nom. illeg.—T.: S. albertiana J.Nelson, nom. illeg. (= Saxegothaea
conspicua Lindl.)
9.10. Microcachrys Hook.f., London J. Bot. 4: 149 (1845).—T.: M. tetragona (Hook.) Hook.f. ( Athrotaxis
tetragona Hook.)
9.11. Pherosphaera W.Archer bis, Hooker's J. Bot. Kew Gard. Misc. 2: 52 (1850).—T.: P. hookeriana
W.Archer bis
Microstrobos J.Garden & L.A.S.Johnson, Contr. New South Wales Natl. Herb. 1: 315 (1951).—T.: M. fitzgeraldii
(F.Muell.) L.A.S.Johnson ( Pherosphaera fitzgeraldii F.Muell.)
9.12. Acmopyle Pilg. in H.G.A. Engler, Nat. Pflanzenr. IV. 5 (Heft 18): 117 (1903).—T.: A. pancheri
(Brongn. & Gris) Pilger ( Dacrydium pancheri Brongn. & Gris)
9.13. Dacrycarpus de Laub., J. Arnold Arbor. 50: 315 (1969).—T.: D. dacrydioides (A.Rich.) de Laub. (
62 Phytotaxa 19 © 2011 Magnolia Press
Podocarpus dacrydioides A.Rich.)
Bracteocarpus A.V.Bobrov & Melikian, Byull. Moskovsk. Obshch. Isp. Prir., Otd. Biol., ser. 2, 103(1): 58 (1998).—T.: B.
imbricatus (Blume) A.V.Bobrov & Melikian ( Dacrycarpus imbricatus (Blume) de Laub., Podocarpus
imbricatus Blume)
Laubenfelsia A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 60 (2000).—T.: L. vieillardii (Parl.)
A.V.Bobrov & Melikian, non rite publ. ( Dacrycarpus vieillardii (Parl.) de Laub.). Note:—Although the name of
the single species of Laubenfelsia was invalidly published, the generic name Laubenfelsia has been considered to be
valid (R.K. Brummitt, pers. comm. to Mill, 19 February 2001).
9.14. Dacrydium Lamb., Descr. Pinus 1: 93 (1807).—T.: D. cupressinum Sol. ex Lamb.
Corneria A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 62 (2000), nom. illeg., non Cornera
Furtado (1955, Arecaceae).—T.: C. elata (Roxb.) A.V.Bobrov & Melikian ( Dacrydium elatum (Roxb.) Wall. ex
Hook. Juniperus elata Roxb.)
Gaussenia A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 62 (2000).—T.: G. lycopodioides
(Brongn. & Gris) A.V.Bobrov & Melikian ( Dacrydium lycopodioides Brongn. & Gris)
Metadacrydium M.G.Baum.-Bod. ex Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 63 (2000).—T.:
M. araucarioides (Brongn. & Gris) M.G.Baum.-Bod. ex Melikian & A.V.Bobrov ( Dacrydium araucarioides
Brongn. & Gris)
9.15. Falcatifolium de Laub., J. Arnold Arbor. 50: 308 (1969).—T.: F. falciforme (Parl.) de Laub. (
Podocarpus falciformis Parl.)
9.16. Retrophyllum C.N.Page, Notes Roy. Bot. Gard. Edinburgh 45: 379 (1989).—T.: R. vitiense (Seem.)
C.N.Page ( Podocarpus vitiensis Seem.)
Decussocarpus de Laub., J. Arnold Arbor. 50: 340 (1969), nom. illeg.—T.: D. vitiensis (Seem.) de Laub. ( Retrophyllum
vitiense (Seem.) C.N.Page Podocarpus vitiensis Seem.) Note:The name Decussocarpus is illegitimate because
it included the earlier name Nageia Gaertn. The type is not a Nageia and was later described as Retrophyllum.
9.17. Nageia Gaertn., Fruct. Sem. Pl. 1: 191 (1788).—T.: N. japonica Gaertn., nom. illeg. ( N. nagi (Thunb.)
Kuntze, Myrica nagi Thunb.)
9.18. Afrocarpus (J.Buchholz & N.E.Gray) C.N.Page, Notes Roy. Bot. Gard. Edinburgh 45: 383 (1989).—T.:
A. falcatus (Thunb.) C.N.Page, as ‘falcata’ ( Taxus falcata Thunb.)
9.19. Podocarpus L’Hér. ex Pers., Syn. Pl. 2: 580 (1807), nom. cons.—T.: P. elongates (Aiton) L’Her. ex
Pers. ( Taxus elongata Aiton, typ. cons.)
Margbensonia A.V.Bobrov & Melikian, Byull. Moskovsk. Obshch. Isp. Prir., Otd. Biol., ser. 2, 103(1): 59 (1998).—T.:
M. macrophylla (Thunb.) A.V.Bobrov & Melikian ( Podocarpus macrophyllum (Thunb.) Sweet, Taxus
macrophylla Thunb.)
ORDER H. CUPRESSALES Link, Handbuch 2: 470 (1829).—T.: Cupressaceae.
Taxales Link, Handbuch 2: 470 (1829).—T.: Taxaceae.
Taxodiales Schimp., Traité Paléont. Vég. 2: 309 (1870).—T.: Taxodiaceae.
Cephalotaxales Takht. ex Reveal, Phytologia 74: 175 (1993).—T.: Cephalotaxaceae.
Sciadopityales Takht. ex Reveal, Phytologia 75: 176 (1993).—T.: Sciadopityaceae.
Actinostrobales Doweld, Tent. Syst. Pl. Vasc: xx (2001).—T.: Actinostrobaceae.
Athrotaxidales Doweld, Tent. Syst. Pl. Vasc: xix (2001).—T.: Athrotaxidaceae.
Cunninghamiales Doweld, Tent. Syst. Pl. Vasc: xix (2001).—T.: Cunninghamiaceae.
Family 10. Sciadopityaceae Luerss., Grundz. Bot.: 265 (1877)—T.: Sciadopitys Siebold & Zucc.
1 genus with a single species in Japan.
10.1. Sciadopitys Siebold & Zucc., Fl. Jap. 2: 1 (1842).—T.: S. verticillata (Thunb.) Siebold & Zucc. (
Taxus verticillata Thunb.)
Family 11. Cupressaceae Gray, Nat. Arr. Brit. Pl. 2: 222. (1822), nom. cons.—T.: Cupressus L.
Juniperaceae J.Presl & C.Presl, Delic. Prag.: 142 (1822).—T.: Juniperus L.
Thujaceae Burnett, Outl. Bot.: 502, 1149 (1835).—T.: Thuja L.
Cunninghamiaceae Siebold & Zucc., Fl. Jap. 2: 1, 3 (1842).—T.: Cunninghamia R.Br.
Phytotaxa 19 © 2011 Magnolia Press 63
Taxodiaceae Saporta, Ann. Sci. Nat.,Bot., ser. 5, 4: 44 (1865), nom. cons.—T.: Taxodium Rich.
Sequoiaceae C.Koch ex Luerss., Grundz. Bot.: 265 (1877).—T.: Sequoia Endl.
Cryptomeriaceae Gorozh., Lekts. Morf. Sist. Archegon.: 88 (1904).—T.: Cryptomeria D.Don
Thujopsidaceae Bessey, Nebraska Univ. Stud. 7: 325 (1907).—T.: Thujopsis Siebold & Zucc. ex Endl.
Actinostrobaceae Lotsy, Vortr. Bot. Stammesgesch. 3: 98 (1911).—T.: Actinostrobus Miq.
Callitridaceae Seward, Fossil Pl. 4: 124, 151, 336 (1919).—T.: Callitris Vent.
Limnopityaceae Hayata, Bot. Mag. (Tokyo) 46: 25. 1932.—T.: Taxodium Rich.
Taiwaniaceae Hayata, Bot. Mag. (Tokyo) 46: 26 (1932).—T.: Taiwania Hayata
Tetraclinaceae Hayata, Bot. Mag. (Tokyo) 46: 27 (1932).—T.: Tetraclinis Masters
Microbiotaceae Nakai, Tyosen-Sanrin 165: 13 (1938).—T.: Microbiota Komarov
Metasequoiaceae S.Miki ex Hu & W.C.Cheng, Bull. Fan Mem. Inst. Biol., ser. 2, 1: 154 (1948).—T.: Metasequoia Hu &
Athrotaxidaceae Doweld, Prosyllab. Tracheophyt.: xix (2001).—T.: Athrotaxis D.Don
Libocedraceae Doweld, Novosti Sist. Vyssh. Rast. 33: 42 (2001).—T.: Libocedrus Endl.
Neocallitropsidaceae Doweld, Prosyllab. Tracheophyt.: xx (2001).—T.: Neocallitropsis Florin
Widdringtoniaceae Doweld, Prosyllab. Tracheophyt.: xx (2001).—T.: Widdringtonia Endl.
Arceuthidaceae A.V.Bobrov & Melikian, Komarovia 4: 79 (2006).—T.: Arceuthos Antoine & Kotschy
Diselmaceae A.V.Bobrov & Melikian, Komarovia 4: 96 (2006).—T.: Diselma Hook.f
Fitzroyaceae A.V.Bobrov & Melikian, Komarovia 4: 80 (2006), ‘Fitz-Royaceae’.—T.: Fitzroya Hook.f. ex Lindl.
Pilgerodendraceae A.V.Bobrov & Melikian, Komarovia 4: 87 (2006).—T.: Pilgerodendron Florin
Platycladaceae A.V.Bobrov & Melikian, Komarovia 4: 97 (2006).—T.: Platycladus Spach
29 genera, ca 130 species, nearly cosmopolitan. This sequence is based on the phylogenetic trees of
Gadek et al. (2000) and Little et al. (2004).
11.1. Cunninghamia R.Br. in L.C.M. Richard, Comm. Bot. Conif. Cycad. 149 (1826), nom. cons., non
Schreb. (1791), nom. rej.—T.: C. sinensis R.Br., nom. illeg. (= C. lanceolata (Lamb.) Hook., Pinus
lanceolata Lamb.)
Belis Salisb., Trans. Linn. Soc. London 8: 315 (1807), nom. rej.—T.: B. jaculifolia Salisb., nom. illeg. ( Pinus
lanceolata Lamb.)
Jacularia Raf., Gard. Mag. & Reg. Rural Domest. Improv. 8: 247 (1832), nom. illeg.
Raxopitys J.Nelson, Pinaceae: 97 (1866)T.: R. cunninghamii J.Nelson, nom. illeg. ( Pinus lanceolata Lamb.)
11.2. Taiwania Hayata, J. Linn. Soc., Bot. 37: 330 (1906).—T.: T. cryptomerioides Hayata
11.3. Athrotaxis D.Don, Ann. Nat. Hist. 1: 234 (1838).—T.: A. selaginoides D.Don
11.4. Metasequoia Hu & W.C.Cheng, Bull. Fan Mem. Inst. Biol., ser. 2, 1(2): 154 (1948), nom. cons., non
Miki (1941, nom. rej. = fossil).—T.: M. glyptostroboides Hu & W.C.Cheng, nom. & typ. cons.
11.5. Sequoia Endl., Syn. Conif.: 197 (1847), nom. cons.—T.: S. sempervirens (D.Don) Endl. ( Taxodium
sempervirens D.Don)
11.6. Sequoiadendron J.Buchholz, Amer. J. Bot. 26: 536 (1939), nom. cons. prop.—T.: S. giganteum (Lindl.)
J.Buchholz ( Wellingtonia gigantea Lindl.)
Wellingtonia Lindl., Gard. Chron. 1853: 823 (1853), nom. illeg., non Meisn. (1840).—T.: W. gigantea Lindl.
Americus Hanford, Great Calif. Tree: 6 (1854), nom. rej. prop.—T.: A. gigantea (Lindl.) Hanford ( Sequoiadendron
giganteum (Lindl.) J.Buchholz Wellingtonia gigantea Lindl.)
Washingtonia Winslow, Calif. Farmer 2: 58 (1854), nom. inadmis., non Raf. ex J.M.Coulter (1900), nom. cons.– T.: W.
californica (= Sequoiadendron giganteum (Lindl.) J.Buchholz Wellingtonia gigantea Lindl.)
11.7. Cryptomeria D.Don, Ann. Nat. Hist. 1: 233 (1838).—T.: C. japonica (Thunb. ex L.f.) D.Don (
Cupressus japonica Thunb. ex L.f.)
11.8. Glyptostrobus Endl., Syn. Conif.: 69 (1847).—T.: Taxodium japonicum Brongn., nom. illeg., non (L.f.)
Brongn. (= G. pensilis (Staunton ex D.Don) K.Koch)
11.9. Taxodium Rich., Ann. Mus. Natl. Hist. Nat. 16: 298 (1810).—T.: T. distichum (L.) Rich. ( Cupressus
disticha L.)
Schubertia Mirb., Nouv. Bull. Sci. Soc. Philom. Paris 3: 123 (1812), nom. rej.—T.: S. disticha (L.) Mirb. ( Cupressus
disticha L.)
Cuprespinnata J.Nelson, Pinaceae: 61 (1866), nom. illeg.—T: C. disticha (L.) J.Nelson ( Taxodium distichum (L.) Rich.
Cupressus disticha L.)
64 Phytotaxa 19 © 2011 Magnolia Press
11.10. Papuacedrus H.L.Li, J. Arnold Arbor. 34: 25 (1953).—T.: P. papuana (F.Muell.) H.L.Li (
Libocedrus papuana F.Muell.)
11.11. Austrocedrus Florin & Boutelje, Acta Horti Berg. 17(2): 28 (1954).—T.: A. chilensis (D.Don)
Pic.Serm. & Bizzarri ( Thuja chilensis D.Don)
11.12. Libocedrus Endl., Syn. Conif.: 42 (1847).—T.: L. doniana Endl., nom. illeg. ( L. plumosa (D.Don)
Sarg. Dacrydium plumosum D.Don)
Stegocedrus Doweld, Novit. Syst. Pl. Vasc. 33: 42 (2001).—T.: S. austrocaledonica (Brongn. & Gris) Doweld (
Libocedrus austrocaledonica Brongn. & Gris).
11.13. Pilgerodendron Florin, Svensk Bot. Tidskr. 24: 132 (1930).—T.: P. uviferum (D.Don) Florin (
Juniperus uvifera D.Don)
11.14. Widdringtonia Endl., Gen. Pl. Suppl. 2: 25 (1842).—T.: W. cupressoides (L.) Endl. ( Thuja
cupressoides L.)
Pachylepis Brongn., Ann. Sci. Nat. (Paris) 30: 189 (1833), nom. illeg., non Less. (1832).—T.: P. cupressoides (L.)
Brongn. ( Widdringtonia cupressoides (L.) Endl. Thuja cupressoides L.)
Parolinia Endl., Gen. Pl. Suppl. 1: 1372 (1841), nom. illeg., non Webb (1840, Brassicaceae).—T.: Thuja cupressoides L.
11.15. Diselma Hook.f., Fl. Tasmaniae 1(5): 353 (1857).—T.: D. archeri Hook.f.
11.16. Fitzroya Hook.f. ex Lindl., J. Hort. Soc. London 6: 264 (1851), as ‘Fitz-Roya’, nom. & orth. cons.—T.:
F. patagonica Hook.f. ex Lindl. (= F. cupressoides (Molina) I.M.Johnst. Pinus cupressoides
Cupresstellata J.Nelson, Pinaceae: 60 (1866).—T.: Cupresstellata patagonica (Hook.f. ex Lindl.) J.Nelson ( Fitzroya
patagonica Hook.f. ex Lindl.)
11.17. Callitris Vent., Decas Gen. 10 (1808).—T.: C. rhomboidea R.Br. ex Rich. & A.Rich.
Frenela Mirb., Mém. Mus. Hist. Nat. 13: 30, 74 (1825), nom. illeg.—T.: Frenela rhomboidea (R.Br. ex Rich & A.Rich.)
Endl., by typification ( Callitris rhomboidea R.Br. ex Rich. & A.Rich.)
Cyparissia Hoffmanns., Preis-Verzeichn. Pfl., ed. 7: 20 (1833), nom. illeg.—T.: C. australis (Pers.) Hoffmanns. (
Cupressus australis Pers. = Callitris rhomboidea R.Br. ex Rich. & A.Rich.)
Octoclinis F.Muell., Trans. & Proc. Philos. Inst. Victoria 2(1): 21 (1857).—T.: O. macleayana F.Muell.
Laechhardtia Gordon, Pinetum Suppl.: 40 (1862).—T.: L. macleayana Gordon, nom. illeg. ( Frenela variabilis Carr.)
Nothocallitris A.V.Bobrov & Melikian, Komarovia 4: 85 (2006).—T.: N. sulcata (Parl.) A.V.Bobrov & Melikian (
Callitris sulcata Parl.).
11.18. Actinostrobus Miq. in J.G.C. Lehmann, Pl. Preiss. 1: 644 (1845).—T.: A. pyramidalis Miq.
11.19. Neocallitropsis Florin, Palaeontographica, Abt. B, Paläophytol. 85B: 590 (1944).—T.: N.
araucarioides (Compton) Florin ( Callitropsis araucarioides Compton)
Callitropsis Compton, J. Linn. Soc., Bot. 45: 432 (1922), nom. illeg., non Oersted (1864).—T.: C. araucarioides
11.20. Thujopsis Siebold & Zucc. ex Endl., Gen. Suppl. 2: 24 (1842), nom. cons.—T.: T. dolabrata (Thunb.
ex L.f.) Siebold & Zucc. ( Thuja dolabrata Thunb. ex L.f.)
Dolophyllum Salisb., J. Sci. Arts (London) 2: 313 (1817), nom. rej.—T.: Thuja dolabrata Thunb. ex L.f.
11.21. Thuja L., Sp. Pl. 2: 1002 (1753).—T.: T. occidentalis L.
Thya Adans., Fam. Pl. 2: 480 (1763), nom. illeg.
11.22. Fokienia A.Henry & H.H.Thomas, Gard. Chron., ser. 3. 49: 67 (1911).—T.: F. hodginsii (Dunn)
A.Henry & H.H.Thomas ( Cupressus hodginsii Dunn)
11.23. Chamaecyparis Spach, Hist. Nat. Vég. Phan. 11: 329 (1841).—T.: C. sphaeroidea Spach, nom. illeg.
( C. thyoides (L.) Britton, Sterns & Poggenb. Cupressus thyoides L.).
Retinispora Siebold & Zucc., Fl. Jap. 2: 36 (1844).—T.: R. obtusa Siebold & Zucc.
Shishindenia Makino ex Koidz., Acta Phytotax. Geobot. 9: 101 (1940).—T.: S. ericoides (Boehm.) Makino ex Koidz. (
Chamaecyparis obtusa var. ericoides Boehm.).
Note:Chamaecyparis obtusa 'Ericoides' is a cultivar, not a natural variety of C. obtusa.
11.24. Cupressus L., Sp. Pl. 2: 1002 (1753).—T.: C. sempervirens L.
Callitropsis Oerst., Vidensk. Meddel. Dansk Naturhist. Foren. Kjøbenhavn 1864: 32. (1864), nom. rej. prop.—T.: C.
nootkatensis (D.Don) Florin ( Cupressus nootkatensis D.Don).
Phytotaxa 19 © 2011 Magnolia Press 65
Xanthocyparis Farjon & T.H.Nguyên, in Farjon et al., Novon 12: 179 (2002), nom. cons. prop.—T.: X. vietnamensis
Farjon & T.H.Nguyên
Tassilicyparis A.V.Bobrov & Melikian, Komarovia 4: 72 (2006).—T.: T. dupreziana (A.Camus) A.V.Bobrov & Melikian
( Cupressus dupreziana A.Camus).
Platycyparis A.V.Bobrov & Melikian, Komarovia 4: 73 (2006).—T.: P. funebris (Endl.) A.V.Bobrov & Melikian (
Cupressus funebris Endl.).
Hesperocyparis Bartel & R.A.Price, Phytologia 91: 179 (2009).—T.: H. macrocarpa (Hartw. ex Gordon) Bartel (
Cupressus macrocarpa Hartw. ex Gordon)
Neocupressus de Laub., Novon 19: 301 (2009), nom. illeg.—T.: N. macrocarpa (Hartw. ex Gordon) de Laub. (
Cupressus macrocarpa Hartw. ex Gordon)
Note:—Adams et al. (2009) showed that Cupressus formed two clades: the Old World clade of Cupressus
was sister to Juniperus, whereas the New World clade of Cupressus (Hesperocyparis) included Xanthocyparis
vietnamensis and Callitropsis nootkatensis. However, Mao et al. (2010) showed that Cupressus in its broad
sense including Xanthocyparis and Callitropsis is monophyletic with weak support. Until resolution of the
phylogenetic position of Cupressus is achieved, we take a conservative option and maintain Cupressus in a
broad sense, including Callitropsis, Hesperocyparis and Xanthocyparis.
11.25. Juniperus L., Sp. Pl. 2: 1038 (1753).—T.: J. communis L.
Sabina Mill., Gard. Dict. Abr., ed. 4, 3 (1754).—T.: S. vulgaris Antoine ( Juniperus sabina L.)
Cedrus Duhamel, Trai Arb. Arbust. 1: xxviii, 139. t. 52 (1755), nom. rej.—T.: Not designated.
Thujiaecarpus Trautv., Pl. Imag.11 (1844).—T.: T. juniperinus Trautv., nom. illeg. (= Juniperus oblonga M.Bieb. = J.
communis var. saxatilis Pall.).
Arceuthos Antoine & Kotschy, Oesterr. Bot. Wochenbl. 4: 249 (1854).—T.: A. drupacea (Labill.) Antoine & Kotschy (
Juniperus drupacea Labill.)
Sabinella Nakai, Tyosen-Sanrin 165: 14 (1938).—T.: S. phoenicea (L.) Nakai ( Juniperus phoenicea L.)
11.26. Calocedrus Kurz, J. Bot. 11: 196 (1873).—T.: C. macrolepis Kurz
Heyderia C.Koch, Dendrologie 2(2): 177 (1873), nom. illeg., non Link (1833, fungus).—T.: H. decurrens (Torrey)
C.Koch ( Calocedrus decurrens (Torrey) Florin Libocedrus decurrens Torrey).
11.27. Tetraclinis Masters, J. Roy. Hort. Soc. 14: 250 (1892).—T.: T. articulata (Vahl) Masters ( Thuja
articulata Vahl)
11.28. Platycladus Spach, Hist. Nat. Vég. Phan. 11: 333 (1841).—T.: P. stricta Spach, nom. illeg. (= P.
orientalis (L.) Franco Thuja orientalis L.)
Biota (D.Don) Endl., Syn. Conif.: 46 (1847), nom. illeg., non Cass. (1825).—T.: B. orientalis (L.) Endl. ( Thuja
orientalis L.)
11.29. Microbiota Komarov, Bot. Mater. Gerb. Glavn. Bot. Sada RSFSR 4(23/24): 180 (1923).—T.: M.
decussata Komarov
Family 12. Taxaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 226 (1822), nom. cons.—T.: Taxus L.
Cephalotaxaceae Neger, Nadelhölzer 23, 30 (1907).—T.: Cephalotaxus Siebold & Zucc. ex Endl.
Amentotaxaceae Kudô & Yamam., in Kudô, J. Soc. Trop. Agric. 3: 110 (1931).—T: Amentotaxus Pilg.
Austrotaxaceae Nakai, Tyosen-Sanrin 158: 14 (1938).—T.: Austrotaxus Compton
Torreyaceae Nakai, Tyosen-Sanrin 158: 14, 23 (1938).—T: Torreya Arnott
6 genera, 28 species, Eurasia to Malesia, North Africa, New Caledonia, North America to Central
America. This sequence follows the phylogenenetic trees of Hao et al. (2008). Taxaceae are monophyletic
when Cephalotaxus and Amentotaxus are included (Price 2003). One could argue that the phylogenetic results
of Hao et al. (2008) support an alternative classification of three families (Taxaceae, Cephalotaxaceae and
Amentotaxaceae), but we have here opted for a wider circumscription of Taxaceae instead of these small
12.1. Austrotaxus Compton, J. Linn. Soc., Bot. 45: 427 (1922).—T.: A. spicata Compton
12.2. Pseudotaxus W.C.Cheng, Res. Notes Forest. Inst. Natl. Centr. Univ. Nanking, Dendrol., ser. 1: 1
(1948).—T.: P. chienii (W.C.Cheng) W.C.Cheng ( Taxus chienii W.C.Cheng)
Nothotaxus Florin, Acta Horti Berg. 14: 394 (1948), nom. illeg.
12.3. Taxus L., Sp. Pl. 2: 1040 (1753).—T.: T. baccata L.
66 Phytotaxa 19 © 2011 Magnolia Press
Verataxus J.Nelson, Pinaceae: 168 (1866).—T.: Taxus communis J.Nelson ( T. baccata L.)
12.4. Cephalotaxus Siebold & Zucc. ex Endl., Gen. Pl. Suppl. 2: 27 (1842).—T.: C. pedunculata Siebold &
Zucc. ex Endl., nom. illeg. (= C. harringtonii (Knight ex J.Forbes) K.Koch Taxus harringtonii
Knight ex J.Forbes)
12.5. Amentotaxus Pilger, Bot. Jahrb. Syst. 54: 41 (1916).—T.: A. argotaenia (Hance) Pilger ( Podocarpus
argotaenia Hance)
12.6. Torreya Arnott, Ann. Nat. Hist. 1: 130 (1838), nom. cons., non Raf. (1818, Lamiaceae), non Raf. (1819,
Cyperaceae), non Spreng (1820, Verbenaceae), non A.Eaton (1929, Loasaceae), all nom. rej.—T.: T.
taxifolia Arnott
Tumion Raf., Good Book: 63 (1840), nom. illeg.—T.: T. taxifolium (Arnott) Greene ( Torreya taxifolia Arnott)
Struvea Rchb., Deutsche Bot. Herbarienbuch: 222, 236 (1841), nom. rej.—T.: Torreya taxifolia Arnott
Caryotaxus Zucc. ex Henkel & Hochst., Syn. Nadelhölzer: 365 (1865), nom. illeg.—T.: C. nucifera (L.) Henkel &
W.Hochst. ( Taxus nucifera L. Torreya nucifera (L.) Siebold & Zucc.)
Foetataxus J.Nelson, Pinaceae: 167 (1866), nom. illeg.—T.: F. montana J.Nelson, nom. illeg. ( Torreya taxifolia
The first author is supported by the University of Helsinki. The Royal Botanic Garden Edinburgh is supported
by the Scottish Government Rural and Environmental Research and Analysis Directorate (RERAD). Michael
Fay is thanked for his excellent editorial work on this manuscript.
Adams, R.P., Bartel, J.A. & Price, R.A. (2009) A new genus, Hesperocyparis, for the cypresses of the western hemisphere.
Phytologia 91: 160–185.
Bailey, I.W. (1944) The development of vessels in angiosperms and its significance in morphological research. American
Journal of Botany 31: 421–428.
Bierhorst, D.W. (1971) Morphology of vascular plants. Macmillan, New York.
Bobrov, A.V.F.Ch. & Melikian, A.P. (2006) A new class of coniferophytes and its system based on the structure of the
female reproductive organs. Komarovia 4: 47–115.
Braukmann, T., Kuzmina, M. & Stefanovi , S. (2010) Structural changes in the plastid genome of gymnosperms support
the “gnepine” hypothesis. Abstract, Botany 2010, available on-line:
Burleigh, J.G. & Mathews, S. (2004) Phylogenetic signal in nucleotide data from seed plants: implications for resolving the
seed plant tree of life. American Journal of Botany 91: 1599–1613.
Chase, M.W. & 41 co-authors (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid
gene rbcL. Annals of the Missouri Botanical Garden 80: 528–580.
Chase, M.W. & Reveal, J.L. (2009) A phylogenetic classification of the land plants to accompany APG III. Botanical
Journal of the Linnean Society 161: 122–127.
Chaw, S.-M., Parkinson, C.L., Cheng, Y., Vincent, T.M. & Palmer, J.D. (2000) Seed plant phylogeny inferred from all three
plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings of the National
Academy of Sciences, USA 97: 4086–4091.
Chaw, S.-M., Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H. (1997) Molecular phylogeny of extant gymnosperms and
seed plant evolution: analysis of nuclear 18S rRNA sequences. Molecular Biology and Evolution14: 56–68.
Conran, J.G., Woods, G.M., Martin, P.G., Dowd, J.M., Quinn, C.J., Gadek, P.A. & Price, R.A. (2000) Generic relationships
within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the
chloroplast gene rbcL. Australian Journal of Botany 48: 715–724.
Doweld, A.B. & Reveal, J.L. (1999, as ‘1998’) Validation of new suprageneric names in Pinophyta. Phytologia 84: 363–
Eames, A.J. (1952) Relationships of Ephedrales. Phytomorphology 2: 79–100.
Farjon, A. (2010) A Handbook of the World’s Conifers. E.J. Brill, Leiden/Boston.
Phytotaxa 19 © 2011 Magnolia Press 67
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. (2000) Relationships within Cupressaceae sensu lato: a
combined morphological and molecular approach. American Journal of Botany 87: 1044–1057.
Hao, D.C., Xiao, P.G., Huang, B.L., Ge, G.B. & Yang, L. (2008) Interspecific relationships and origins of Taxaceae and
Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant
Systematics and Evolution 276: 89–104.
Hasebe, M., Kofuji, R., Ito, M., Kato, M., Iwatsuki, K. & Veda, K. (1992) Phylogeny of gymnosperms inferred from
rbcLgene sequences. Botanical Magazine (Tokyo) 105: 673–679.
Haston, E., Richardson, J.E., Stevens, P.F., Chase, M.W. & Harris, D.J. (2007) A linear sequence of Angiosperm
Phylogeny Group II families. Taxon 56: 7–12.
Haston, E., Richardson, J.E., Stevens, P.F., Chase, M.W. & Harris, D.J. (2009) The linear Angiosperm Phylogeny Group
(LAPG) III: a linear sequence of the families in APG III. Botanical Journal of the Linnean Society 161: 128–131.
Hori, H., Lim, B,-L. & Osawa, S. (1985) Evolution of green plants as deduced from 5S. rRNA sequences. Proceedings of
the National Academy of Sciences, USA 82: 820–823.
Kelch, D.G. (1997) The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113–
Kelch, D.G. (1998) Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American
Journal of Botany 85: 986–996.
Kunzmann, L. (2007) Araucariaceae (Pinopsida): aspects in palaeobiogeography and palaeobiodiversity in the Mesozoic.
Zoologischer Anzeiger 246: 257–277.
Lindstrom, A.J. (2009) Typification of some species names in Zamia L. (Zamiaceae), with an assessment of the status of
Chigua D. Stev. Taxon 58: 265–270.
Liston, A., Gernandt, D.S., Vining T.F., Campbell, C.S. & Piñero, D. (2003) Molecular phylogeny of Pinaceae and Pinus,
in: Mill, R.R. (ed.), Proceedings of the Fourth International Conifer Conference [Acta Horticulturae No. 615].
International Society for Horticultural Science, Leuven, pp. 107–114.
Little, D.P., Schwarzbach, A.E., Adams, R.P. & Hsieh, C.-F. (2004) The circumscription and phylogenetic relationships of
Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91: 1872–
Mao, K., Hao, G., Liu, J., Adams, R.P. & Milne, R.I. (2010) Diversification and biogeography of Juniperus
(Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytologist 188: 254–272.
Melikian, A.P. & Bobrov, A.V. (2000) Morfologiya shchenskikh reproduktivi’kh obganov i op’t rostroenniya
filogeneticheskoj sistemy poryadkov Podocarpales, Cephalotaxales i Taxales. [Morphology of female reproductive
structures and an attempt of the construction of phylogenetic system of orders Podocarpales, Cephalotaxales and
Taxales ]. Botanicheskij Zhurnal (Moscow & Leningrad) 85(7): 50–68.
Passalia, M.G., Del Fueyo, G. & Archangelsky, S. (2010) An Early Cretaceous zamiaceous cycad of South West
Gondwana: Restrepophyllum nov. gen. from Patagonia, Argentina. Review of Palaeobotany and Palynology 161: 137–
Price, R.A. (2003) Generic and familial relationships of the Taxaceae from rbcL and matK sequence comparisons, in: Mill,
R.R. (ed.). Proceedings of the fourth international conifer conference [Acta Horticultural No. 615]. International
Society for Horticultural Science, Leuven, pp. 235–237.
Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M., Zimmer, E.A., Chen, Z., Savolainen, V. &
Chase, M.W. (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature
402: 404–407.
Ran, J.-H., Gao, H. & Wang, X.-Q. (2010) Fast evolution of the retroprocessed mitochondrial rps3 gene in conifer II and
further evidence for the phylogeny of gymnosperms. Molecular Phylogenetics and Evolution 54: 136–149.
Rydin, C., Källersjö, M. & Friis, E.M. (2002) Seed plant relationships and the systematic position of Gnetales based on
nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. International
Journal of Plant Sciences 163: 197–214.
Sinclair, W.T., Mill, R.R., Gardner, M.F., Woltz, P., Jaffré, T., Preston, J., Hollingsworth, M.L., Ponge, A. & Möller, M.
(2002) Evolutionary relationships of the New Caledonian heterotrophic conifer Parasitaxus usta (Podocarpaceae),
inferred from chloroplast trnL-F intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution
233: 79–104.
Sporne, K.R. (1965) The morphology of gymnosperms, ed. 1. Hutchinson, London.
Sun, C., Dilcher, D.L., Wang. H., Sun, G. & Ge, Y. (2008) A study of Ginkgo leaves from the Middle Jurassic of Inner
Mongolia, China. International Journal of Plant Sciences 169: 1128–1139.
Troitsky, A.V., Melekhovets, Y.F., Rakhimova, G.M., Bobrova, V.K., Valiejo-Roman, K.M. & Antonov, A.S. (1991)
Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. Journal of
Molecular Evolution 32: 253–261.
Zgurski, J.M., Rai, H.S., Fai, Q.M., Bogler, D.J., Francisco-Ortega, J. & Graham, S.W. (2008) How well do we understand
the overall backbone of cycad phylogeny? New insights from a large, multigene plastid data set. Molecular
Phylogenetics and Evolution 47: 1232–1237.
68 Phytotaxa 19 © 2011 Magnolia Press
Appendix 1. Index to gymnosperm genera
Below we provide an alphabetic list to the genera of gymnosperms. Accepted genera are printed in bold followed by the
family. Synonymous genera are in italics followed by the currently accepted genus and their family.
Abies Mill.—Pinaceae
Abietia A.H.Kent = Pseudotsuga—Pinaceae
Abutua Lour. = Gnetum—Gnetaceae
Acmopyle Pilg.—Podocarpaceae
Actinostrobus Miq.—Cupressaceae
Afrocarpus (J.Buchholz & N.E.Gray) C.N.Page—Podocarpaceae
Agathis Salisb.—Araucariaceae
Amentotaxus Pilg.—Taxaceae
Americus Hanford = Sequoiadendron—Cupressaceae
Apinus Neck. ex Rydb. = Pinus—Pinaceae
Araucaria Juss.—Araucariaceae
Arceuthos Antoine & Kotschy = Juniperus—Cupressaceae
Athrotaxis D.Don—Cupressaceae
Aulacophyllum Regel = Zamia—Zamiaceae
Austrocedrus Florin & Boutelje—Cupressaceae
Austrotaxus Compton—Taxaceae
Belis Salisb. = Cunninghamia—Cupressaceae
Biota (D.Don) Endl. = Platycladus—Cupressaceae
Botryopitys Doweld = Prumnopitys—Podocarpaceae
Bowenia Hook.f.—Zamiaceae
Bracteocarpus A.V.Bobrov & Melikian = Dacrycarpus—Podocarpaceae
Brownetera Rich. ex Tratt. = Phyllocladus—Podocarpaceae
Callitris Vent.—Cupressaceae
Callitropsis Compton = Neocallitropsis—Cupressaceae
Callitropsis Oerst. = Cupressus—Cupressaceae
Calocedrus Kurz—Cupressaceae
Caryopitys Small = Pinus—Pinaceae
Caryotaxus Zucc. ex Henkel & Hochst. = Torreya—Taxaceae
Catakidozamia W.Hill = Lepidozamia—Zamiaceae
Cathaya Chun & Kuang—Pinaceae
Cedrus Duhamel = Juniperus—Cupressaceae
Cedrus Trew—Pinaceae
Cephalotaxus Siebold & Zucc.—Taxaceae
Ceratozamia Brongn.—Zamiaceae
Chaetocladus J.Nelson = Ephedra—Ephedraceae
Chamaecyparis Spach—Cupressaceae
Chigua D.W.Stev. = Zamia L.—Zamiaceae
Chrysolarix H.E.Moore = Pseudolarix—Pinaceae
Columbea Salisb. = Araucaria—Araucariaceae
Corneria A.V.Bobrov & Melikian = Dacrydium—Podocarpaceae
Cryptomeria D.Don—Cupressaceae
Cunninghamia R.Br.—Cupressaceae
Cuprespinnata J.Nelson = Taxodium—Cupressaceae
Cupresstellata J.Nelson = Fitzroya—Cupressaceae
Cupressus L.—Cupressaceae
Cycas L.—Cycadaceae
Cyparissia Hoffmanns. = Callitris—Cupressaceae
Dacrycarpus de Laub.—Podocarpaceae
Dacrydium Lamb.—Podocarpaceae
Dammara Link = Agathis—Araucariaceae
Decussocarpus de Laub. = Retrophyllum—Podocarpaceae
Dioon Lindl.—Zamiaceae
Diselma Hook.f.—Cupressaceae
Dolophyllum Salisb. = Thujopsis—Cupressaceae
Dombeya Lam. = Araucaria—Araucariaceae
Ducampopinus A.Chev. = Pinus—Pinaceae
Phytotaxa 19 © 2011 Magnolia Press 69
Dyerocycas Nakai = Cycas—Cycadaceae
Encephalartos Lehm.—Zamiaceae
Ephedra L.—Ephedraceae
Epicycas de Laub. = Cycas—Cycadaceae
Eutacta Link = Araucaria—Araucariaceae
Eutassa Salisb. = Araucaria—Araucariaceae
Falcatifolium de Laub.—Podocarpaceae
Fitzroya Hook.f. ex Lindl.—Cupressaceae
Foetataxus J.Nelson = Torreya—Taxaceae
Fokienia A.Henry & H.H.Thomas—Cupressaceae
Frenela Mirb. = Callitris—Cupressaceae
Gaussenia A.V.Bobrov & Melikian = Dacrydium—Podocarpaceae
Ginkgo L.—Ginkgoaceae
Glyptostrobus Endl.—Cupressaceae
Gnemon Kuntze = Gnetum—Gnetaceae
Gnetum L.—Gnetaceae
Halocarpus Quinn—Podocarpaceae
Hesperocyparis Bartel & R.A.Price = Cupressus—Cupressaceae
Hesperopeuce (Engelm.) Lemmon = Tsuga—Pinaceae
Heyderia C.Koch = CalocedrusCupressaceae
Jacularia Raf. = Cunninghamia—Cupressaceae
Juniperus L.—Cupressaceae
Keteleeria Carr.—Pinaceae
Laechhardtia G.Gordon = Callitris—Cupressaceae
Lagarostrobos Quinn—Podocarpaceae
Laricopsis A.H.Kent = Pseudolarix—Pinaceae
Larix Mill.—Pinaceae
Laubenfelsia A.V.Bobrov & Melikian = Dacrycarpus—Podocarpaceae
Lepidothamnus Phil.—Podocarpaceae
Lepidozamia Regel—Zamiaceae
Leucopitys Nieuwl. = Pinus—Pinaceae
Libocedrus Endl.—Cupressaceae
Macrozamia Miq.—Zamiaceae
Manoao Molloy—Podocarpaceae
Margbensonia A.V.Bobrov & Melikian = Podocarpus—Podocarpaceae
Marywildea A.V.Bobrov & Melikian = Araucaria—Araucariaceae
Metadacrydium M.G.Baum.-Bod. ex Melikian & A.V.Bobrov = Dacrydium—Podocarpaceae
Metasequoia Hu & W.C.Cheng—Cupressaceae
Microbiota Komarov—Cupressaceae
Microcachrys Hook.f.—Podocarpaceae
Microcycas (Miq.) A.DC.—Zamiaceae
Microstrobos J.Garden & L.A.S.Johnson = Pherosphaera—Podocarpaceae
Nageia Gaertn.—Podocarpaceae
Neocallitropsis Florin—Cupressaceae
Neocupressus de Laub. = Cupressus—Cupressaceae
Nothocallitris A.V.Bobrov & Melikian = Callitris—Cupressaceae
Nothotaxus Florin = Pseudotaxus—Taxaceae
Nothotsuga Hu ex C.N.Page—Pinaceae
Octoclinis F.M uell. = Callitris—Cupressaceae
Pachylepis Brongn. = Widdringtonia—Cupressaceae
Palma–Filix Adans. = Zamia—Zamiaceae
Palmifolium Kuntze = Zamia—Zamiaceae
Papuacedrus H.L.Li—Cupressaceae
Parasitaxus de Laub.—Podocarpaceae
Parolinia Endl. = Widdringtonia—Cupressaceae
Pherosphaera W.Archer bis—Podocarpaceae
Phyllocladus Rich. & Mirb.—Podocarpaceae
Picea A.Dietr.—Pinaceae
Picea D.Don ex Loud. = Abies—Pinaceae
Pilgerodendron Florin—Cupressaceae
Pinea Wolf = Pinus—Pinaceae
70 Phytotaxa 19 © 2011 Magnolia Press
Pinus L.—Pinaceae
Platycladus Spach—Cupressaceae
Platycyparis A.V.Bobrov & Melikian = Cupressus—Cupressaceae
Platyzamia Zucc. = Dioon—Zamiaceae
Podocarpus L’Hér. ex Pers.—Podocarpaceae
Podocarpus Labill. = Phyllocladus—Podocarpaceae
Prumnopitys Phil.—Podocarpaceae
Pseudolarix Gordon—Pinaceae
Pseudotaxus Cheng—Taxaceae
Pseudotsuga Carr.—Pinaceae
Pterophyllus J.Nelson = Ginkgo—Ginkgoaceae
Quadrifaria Manetti ex Gordon = Araucaria—Araucariaceae
Raxopitys J.Nelson = Cunninghamia—Cupressaceae
Retinispora Siebold & Zucc. = Chamaecyparis—Cupressaceae
Retrophyllum C.N.Page—Podocarpaceae
Sabina Mill. = Juniperus—Cupressaceae
Sabinella Nakai = Juniperus—Cupressaceae
Salisburia Sm. = Ginkgo—Ginkgoaceae
Salisburyodendron A.V.Bobrov & Melikian = AgathisAraucariaceae
Saxegothaea Lindl.—Podocarpaceae
Schubertia Mirb. = Taxodium—Cupressaceae
Sciadopitys Siebold & Zucc.—Sciadopityaceae
Sequoia Endl.—Cupressaceae
Sequoiadendron J.Buchholz—Cupressaceae
Shishindenia Makino ex Koidz. = Chamaecyparis—Cupressaceae
Squamataxus J.Nelson = Saxegothaea—Podocarpaceae
Stachycarpus (Endl.) Tiegh. = Prumnopitys—Podocarpaceae
Stachypitys A.V.Bobrov & Melikian = Prumnopitys—Podocarpaceae
Stangeria T.Moore—Zamiaceae
Stegocedrus Doweld = Libocedrus—Cupressaceae
Strobus (Sweet ex Spach) Opiz = Pinus—Pinaceae
Struvea Reichenb. = Torreya—Taxaceae
Sundacarpus (J.Buchholz & N.E.Gray) C.N.Page– Podocarpaceae
Taiwania Hayata—Cupressaceae
Tassilicyparis A.V.Bobrov & Melikian = Cupressus—Cupressaceae
Taxodium Rich.—Cupressaceae
Taxus L.—Taxaceae
Tetraclinis Masters—Cupressaceae
Thalamia Spreng. = Phyllocladus—Podocarpaceae
Thoa Aubl. = Gnetum—Gnetaceae
Thuja L.—Cupressaceae
Thujiaecarpus Trautv. = Juniperus—Cupressaceae
Thujopsis Siebold & Zucc. ex Endl.—Cupressaceae
Thya Adans. = Thuja—Cupressaceae
Titanodendron A.V.Bobrov & Melikian = Araucaria—Araucariaceae
Todda–Pana Adans. = Cycas—Cycadaceae
Torreya Arn.—Taxaceae
Tsuga (Endl.) Carr.—Pinaceae
Tumboa Welw. = Welwitschia—Welwitschiaceae
Tumion Raf. = Torreya—Taxaceae
Van-Tieghemia A.V.Bobrov & Melikian, nom. illeg. = Prumnopitys—Podocarpaceae
Verata xus J.Nelson = Taxus—Taxaceae
Veitchia Lindl. = Picea?—Pinaceae
Washingtonia Winslow = Sequoiadendron—Cupressaceae
Wellingtonia Lindl. = Sequoiadendron—Cupressaceae
Welwitschia Hook.f.—Welwitschiaceae
Widdringtonia Endl.—Cupressaceae
Wollemia W.G.Jones, K.D.Hill & J.M.Allen—Araucariaceae
Xanthocyparis Farjon & T.H.Nguyên = Cupressus—Cupressaceae
Zamia L.—Zamiaceae
... For hybrid larches, their male reproductive organ is formed by the aggregation of microsporophylls (stamens), which is also known as a microsporophyll sphere or staminate cone. The female reproductive organ is formed by the cluster or aggregation of megasporophylls (ovules), which is also known as an ovule-bearing cone or pistillate cone [9]. Therefore, the induction of the formation of male and female cones in hybrid larches is referred to as the induction of flowering. ...
... Therefore, the floral bud development stage is divided into the first three periods and the last four periods for differential analysis, revealing clear patterns. DREB1, 2,4,7,8,9,10,11,12, and 13 showed significantly higher expression levels in the first three periods compared to the last four periods, suggesting their potential involvement in signal transduction and cone-setting induction. On the other hand, DREB3, DREB5, and DREB6 showed higher expression levels in the last four periods, which may be their potential role as organ development genes. ...
Full-text available
AP2/ERF is an important transcription factor family involved in physiological processes such as plant development and hormone signaling. In this study, based on the available transcriptome data of hybrid larch during floral induction, 13 DREB genes belonging to the AP2/EREBP family with complete CDS regions were identified through alignment using the NCBI website. We conducted a bioinformatics analysis on the gene sequences, examining their tissue specificity, response to hormone treatment, and response to environmental factors. The DREB genes in hybrid larch (Larix kaempferi × Larix olgensis) showed tissue-specific expression, with DREB7, DREB8, DREB10, DREB12, and DREB13 exhibiting higher expression levels in nascent buds and higher expression in female cones compared to male cones. They also showed high expression during signal convergence and floral induction, and were highly expressed in materials with good fertility, suggesting their positive role in the cone-setting process of hybrid larch. Additionally, 13 DREB genes were all induced by abscisic acid (ABA), gibberellin 3 (GA3), and indoleacetic acid (IAA), with the most pronounced expression changes observed after ABA treatment, indicating that these genes might be mainly regulated by ABA. In response to temperature and photoperiod treatments, DREB7, DREB8, DREB10, DREB12, and DREB13 showed significant responses, with increased expression levels induced by low temperature, while no clear pattern was observed after long or short-day treatments. These results of the study provide a reference for understanding the function of the DREB gene family in hybrid larch, offer a theoretical basis for inducing floral bud differentiation in hybrid larch, and contribute to a better understanding of the molecular mechanisms underlying cone-setting in hybrid larch.
... , Noltie(1994Noltie( , 2000, Hara (1966, 71), Biswas (1966), Ohashi (1975), Matthew (1981), Das (1986), Bhujel (1996) and Iwatsuki (1988).The recorded angiosperms were assorted according to the Bentham and Hooker's System of Plant Classification (1862-1883), Gymnosperms according to Christenhusz et al. (2011) and Pteridophytes according to Smith et al. (2006). ...
Full-text available
The paper deals with the floristic survey of Darjeeling Government College Campus. The study has revealed the occurrence of 204 species under 173 genera and 83 families growing naturally, including herbs (143 spp), Shrubs (34 spp) and Trees (27 spp). Angiosperms are represented by 174 spp, Gymnosperms by 8 spp and Pteridophytes by 22 spp.
... and the GBIF platform (GBIF, 2023). Data about the Huastec Mayan useful plants were compiled from previous studies about ethnobotanical knowledge (Rzedowski 1966, Alcorn 1984 Classification was based on Christenhusz et al. (2011) for families of ferns, fern allies, and gymnosperms, and the APG IV system (APG 2016) for angiosperms. ...
Biodiversity in the Neotropics includes an extraordinary diversity of plant variation produced by evolution that is useful for human well-being. Traditional knowledge of the Tenek, a Huastec Mayan culture, represents an important biocultural heritage for this realm. Here, we used the information about their useful plants to explore evolutionary biocultural patterns occurring in Neotropics. Our goal was to analyse the phylogenetic distribution of usage guilds, their degree of evolutionary clustering, significant associations, and phylogenetic overlap between guilds to test the hypothesis that Tenek selection of plants is not random but phylogenetically clustered. We found significant phylogenetic clustering in all usage guilds except ceremonial and medicine. Tenek people use a variety of relatively deep plant lineages providing specific services that biocultural processes have promoted in the ecosystems they inhabit. The lineages Asterales, Caryophyllales, Fabales, Lamiales, Malpighiales, and Malvales in eudicots and Poales and Asparagales in monocots concentrated most of the Huastec Mayan useful plants. Multi-functional hot nodes, including Asterales, Fabales, Lamiales, Malvales, Poaceae Sapindales, and Solanales, with phylogenetic overlap between usage guilds, should be major priority targets in conservation planning.
... In addition to the climate, the vegetation cover of mountains is also affected by dangerous meteorological phenomena, such as drought, especially in regions with reduced water supply [5]. Finally, climate change's relationship with agricultural transformations is one of the main factors influencing mountain regions' vegetation [6]. Thus, to identify the causes of changes in the biodiversity of vegetation cover in mountainous regions and control the abundance of plant species, it is necessary to have a complete list of all species with the distribution of each in a given territory. ...
... present study, in addition to trees, we also included tree-like growth forms like cycads, ferns, Poaceae (bamboos), Musaceae, and plant species that occur as both shrub and tree growth forms. For the family arrangement of tree species in our database, we have followed Angiosperm Phylogeny Group-IV Classification (APG IV, 2016) for angiosperms, Christenhusz et al. (2011) for gymnosperms, and PPG I (2016) for ferns. ...
Full-text available
The recent adoption of Kunming-Montreal Global Biodiversity Framework requires empirical synthesis of biodiversity data spanning across broad biogeographic scales to inform conservation policy and management. Although the availability and access to biodiversity databases have recently improved, yet majority of these databases lack sufficient geographic coverage, especially from the biodiversity hotspot regions of developing countries, thereby severely limiting their utility and generalizability across the globe. Here, we present a comprehensive tree database (2199 species) of the Indian Himalayan Region (IHR) – home to two global biodiversity hotspots – collated from a quantitative synthesis of 234 studies published over the last one century. Taking leverage of this novel database, we unravel the patterns of diversity, distribution, and drivers of the trees of IHR. We found that the species richness, compositional similarity, distribution patterns, and biome affiliation of the tree diversity vary significantly across the IHR, with nearly half of the tree species affiliated with the wet tropical biome. Of the 10 climatic and environmental drivers used, the annual mean temperature and elevation width in combination best predicted the variation in tree diversity across the IHR. We also document 117 endemic and 88 threatened tree species in the IHR, which merit conservation priority. Our findings have significant utility in formulating management and restoration strategies for biodiversity conservation across the IHR. Overall, our study showcases a model biodiversity database with wide policy implications in the planning and management of tree-focussed environmental programs to restore the degraded forest landscapes and plantation-specific climate change mitigation strategies in the region.
... For the analysis of the plant families, we updated the default taxonomic circumscription used by JACQ according to PPG I (2016) for ferns and fern allies, to Christenhusz et al. (2011) for gymnosperms, and to APG IV (2016) for angiosperms. ...
Full-text available
The herbarium digitization process is an essential first step in transforming the vast amount of data associated with a physical specimen into flexible digital data formats. In this framework, the Herbarium of the University of Pisa (international code PI), at the end of 2018 started a process of digitization focusing on one of its most relevant collections: the Herbarium of Michele Guadagno (1878–1930). This scholar studied flora and vegetation of different areas of southern Italy, building a large herbarium including specimens collected by himself, plus many specimens obtained through exchanges with Italian and foreign botanists. The Herbarium is composed by 547 packages of vascular plants. Metadata were entered into the online database Virtual Herbaria JACQ and mirrored into a personalized virtual Herbarium of the Botanic Museum. After the completion of the digitization process, the number of sheets preserved in the Herbarium amounts to 44,345. Besides Guadagno, who collected 42% of his specimens, further 1,102 collectors are represented. Most specimens were collected in Europe (91%), but all the continents are represented. As expected, Italy is the most represented country (59%), followed by France, Spain, Germany, and Greece. The specimens cover a time span of 99 years, from 1830 to 1929, whereas the specimens collected by Guadagno range between 1889 and 1928. Furthermore, we traced 134 herbarium sheets associated with documents, among which 75 drawings handmade by Guadagno, 34 letters from various corresponding authors, 16 copies of publications, and 14 copies of published iconographies.
... Supplementary Materials: The following supporting information can be downloaded at: https:// References [52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70] ...
Full-text available
The human genome involves six functional arachidonic acid lipoxygenase (ALOX) genes and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. In other vertebrates, ALOX-isoforms have also been identified, but they occur less frequently. Since bony fish represent the most abundant subclass of vertebrates, we recently expressed and characterized putative ALOX15 orthologs of three different bony fish species (Nothobranchius furzeri, Pundamilia nyererei, Scleropages formosus). To explore whether these enzymes represent functional equivalents of mammalian ALOX15 orthologs, we here compared a number of structural and functional characteristics of these ALOX-isoforms with those of mammalian enzymes. We found that in contrast to mammalian ALOX15 orthologs, which exhibit a broad substrate specificity, a membrane oxygenase activity, and a special type of dual reaction specificity, the putative bony fish ALOX15 orthologs strongly prefer C20 fatty acids, lack any membrane oxygenase activity and exhibit a different type of dual reaction specificity with arachidonic acid. Moreover, mutagenesis studies indicated that the Triad Concept, which explains the reaction specificity of all mammalian ALOX15 orthologs, is not applicable for the putative bony fish enzymes. The observed functional differences between putative bony fish ALOX15 orthologs and corresponding mammalian enzymes suggest a targeted optimization of the catalytic properties of ALOX15 orthologs during vertebrate development.
Full-text available
A dataset on inventory and geographical distribution of vascular plants in Xizang, China
Full-text available
There have been plenty of palynological studies on Quaternary from the Mediterranean region in the past decades. However, few focused on the iconographic documentation of pollen grains. An illustrated, descriptive atlas of pollen from Holocene sediments (S05B core and surface samples) and mosses from Mar Piccolo (southern Italy) was compiled. The pollen atlas includes 143 taxa representative of local (wetlands including both freshwater and salt marshes), regional and extra regional sources as well as some alien taxa (e.g., Citrus medica and Eucalyptus). A total of 490 light microscopy images are organized in 15 plates concerning 27 species and 75 genera within 26 families. The atlas is intended to serve as practical guide for pollen investigations, aiming at reconstructions of flora and vegetation, as well as environmental and climate changes in southern Italy.
Full-text available
Molecular phylogenetic reconstructions of Pinaceae based on immunological approaches plus nuclear and organellar DNA sequences consistently resolve the generic pairs Larix - Pseudotsuga and Abies - Keteleeria. In most analyses Pseudolarix and Tsuga (including Nothotsuga) form a clade that is sister to the Abies - Keteleeria clade, and Cathaya, Picea, and Pinus make up an unresolved trichotomy. The position of Cedrus remains problematic; molecular evidence supports a basal position in the family. Within Pinaceae genera, molecular phylogenetic reconstructions have markedly improved our understanding of species relationships and biogeography in Pinus, Larix, Pseudotsuga, and Tsuga.
Full-text available
During the Mesozoic era, Ginkgo leaves are diverse and widespread, especially in the Northern Hemisphere. Here we present three Ginkgo leaf types collected from the Middle Jurassic Zhaogou Formation of Shiguai coal-bearing basin in Inner Mongolia, China. These are described for the first time on the basis of their leaf morphology and well-preserved cuticular characters. One new species, Ginkgo shiguaiensis, is described, and Ginkgo longifolius is recognized, while a third leaf type is designated as Ginkgo sp. The occurrence of these leaf types in the Middle Jurassic of Inner Mongolia significantly extends the stratigraphic and geographic distribution of Ginkgo in China. The associated plants, cuticular characters of the Ginkgo leaves, and the sedimentology of the plant-bearing strata suggest that these plants grew in a warm-temperate and moist climate.
The first handbook to include detailed information on all 615 conifers, temperate as well as tropical, this encyclopedic work offers users as diverse as ecologists, gardeners, foresters and conservationists the accumulated knowledge of these trees obtained in 30 years of academic research, presented in an easily searchable format. © 2010 by Koninklijke Brill NV, Leiden, The Netherlands. All rights reserved.
Sequence comparisons of the chloroplast genes rbcL and matK suggest that the five genera of traditional Taxaceae plus Cephalotaxus can be treated as a single natural family. The expanded Taxaceae is very strongly supported as the sister group to the Cupressaceae. Within the expanded Taxaceae, three subfamilial lineages are well supported by sequence comparisons: Cephalotaxus; Amentotaxus plus Torreya; and Austrotaxus plus Pseudotaxus and Taxus.
The Podocarpaceae traditionally comprise seven genera in one family. Modern authors have recognized as many as 18 genera distributed in four families. A cladistic analysis of morphological evidence resulted in one most parsimonious tree, with Saxegothaea as sister group to other genera. The scale-leaved clade comprises imbricate-leaved taxa of Holantarctic distribution. Another clade includes Podocarpus s. str., and other taxa presently concentrated in the tropics. Podocarpus s.l. and Dacrydium s.l. were paraphyletic and polyphyletic, respectively, supporting the recognition of segregate genera. Phyllocladus, Saxegothaea, and Nageia section Nageia, sometimes placed in monotypic families, are best treated as members of the Podocarpaceae. Some modern distributions (e.g., those of the three sections of Nageia s.l.) may be explained by vicariance owing to the break-up of Gondwana.
Analysis of sequences of the chloroplast gene rbcL for 76 taxa of Podocarpaceae (representing all genera except Parasitaxus) and five species of Phyllocladaceae were undertaken with respect to their relationships to each other and to 28 coniferalean outgroup taxa from seven families. The results indicate that Podocarpaceae are polyphyletic unless expanded to include Phyllocladaceae. Within Podocarpaceae, Sundacarpus is placed in a clade with Prumnopitys, and Falcatifolium is paraphyletic as a basal grade to Dacrydium. Phyllocladus is in an unresloved clade with Halocarpus, Manoao/Lagarostrobos and Prumnopitys/Sundacarpus. The separation of Afrocarpus from Podocarpus and its placement instead as sister to Nageia and Retrophyllum is supported. Podocarpus s. str. is monophyletic, with both subgenera identified, albeit poorly supported. The analysis placed Lepidothamnus and Saxegothaea in an unresolved basal polytomy within the family. There were no clear outgroup relationships with the family. These results differ from the morphological clades found by Kelch (1997), and disagree strongly with his 18S-sequence-based phylogeny (Kelch 1998). However, jackknife support values indicate that although the genera are well supported, relationships both within and between them are not, suggesting that intergeneric relationships in the family require further study. There is also some congruence between our results and those of the gymnosperm 18S study by Chaw et al. (1997), although their study included only three Podocarpaceae and one Phyllocladaceae species.