This article provides a broad review of osmoregulation in elasmobranchs for non-specialists, focusing on recent advances. Marine and euryhaline elasmobranchs in seawater regulate urea and other body fluid solutes (trimethylamine oxide (TMAO), Na þ , Cl À) such that they remain hyper-osmotic to their environment. Salt secretions of the rectal gland and excretions in the urine compensate for continuous inward diffusion of environmental salts. Freshwater and euryhaline elasmobranchs in fresh water synthesise less urea and retain less urea and other body fluid solutes compared to marine elasmobranchs and thus have relatively lower osmolarity. Electrolyte uptake at the gills and kidney reabsorption of salts maintain acid–base balance and ionic consistency. The role of the gills, kidney, liver and rectal gland in elasmobranch osmoregulation is reviewed. The ontogeny of osmoregulatory systems in elasmobranchs and the contribution of drinking and eating processes in maintaining osmotic consistency are discussed. Recommendations for future research are presented.