ArticlePDF Available

Diversification of the Old World Salsoleae s.l. (Chenopodiaceae): Molecular Phylogenetic Analysis of Nuclear and Chloroplast Data Sets and a Revised Classification

Authors:

Abstract and Figures

A first comprehensive phylogenetic analysis of tribe Salsoleae s.l. (Salsoloideae: Chenopodiaceae) is presented based on maximum parsimony and maximum likelihood analysis of nuclear ribosomal internal transcribed spacer and chloroplast psbB-psbH DNA sequences. Our data strongly support (1) the sister relationship of Camphorosmeae to the Salsoleae s.l.; (2) splitting of Salsoleae s.l. into two monophyletic tribes, Salsoleae s.s. and Caroxyloneae tribus nova; (3) the current status of most monotypic or oligotypic genera in Salsoleae; and (4) polyphyly of the Botschantzev and Freitag (among others) circumscriptions of Salsola, which falls into 10 (on average) monophyletic genera/lineages. Three well-supported genera are described as new (Pyankovia, Kaviria, and Turania), and four previously described genera are resurrected (Caroxylon, Clima-coptera, Kali, and Xylosalsola). Salsola s.s. include a group of central and southwest Asian and north African species that consists of Salsola sect. Salsola s.s., Salsola sect. Caroxylon subsect. Coccosalsola, Salsola sect. Obpyrifolia, Fadenia, Hypocylix, Seidlitzia, and Darniella. All species of tribe Caroxyloneae investigated so far have C 4 photosynthesis of the NAD-malic enzyme subtype, while the majority of the species of Salsoleae s.s. are known to be of the NADP-malic enzyme subtype.
Content may be subject to copyright.
DIVERSIFICATION OF THE OLD WORLD SALSOLEAE s.l. (CHENOPODIACEAE):
MOLECULAR PHYLOGENETIC ANALYSIS OF NUCLEAR AND CHLOROPLAST
DATA SETS AND A REVISED CLASSIFICATION
Hossein Akhani,1
,
* Gerald Edwards,yand Eric H. Roalson2
,
y
*School of Biology, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran; and ySchool of Biological
Sciences and Center for Integrated Biotechnology, Washington State University, Pullman, Washington 99164-4236, U.S.A.
A first comprehensive phylogenetic analysis of tribe Salsoleae s.l. (Salsoloideae: Chenopodiaceae) is
presented based on maximum parsimony and maximum likelihood analysis of nuclear ribosomal internal
transcribed spacer and chloroplast psbB-psbH DNA sequences. Our data strongly support (1) the sister
relationship of Camphorosmeae to the Salsoleae s.l.; (2) splitting of Salsoleae s.l. into two monophyletic tribes,
Salsoleae s.s. and Caroxyloneae tribus nova; (3) the current status of most monotypic or oligotypic genera in
Salsoleae; and (4) polyphyly of the Botschantzev and Freitag (among others) circumscriptions of Salsola, which
falls into 10 (on average) monophyletic genera/lineages. Three well-supported genera are described as new
(Pyankovia,Kaviria, and Turania), and four previously described genera are resurrected (Caroxylon,Clima-
coptera,Kali, and Xylosalsola). Salsola s.s. include a group of central and southwest Asian and north African
species that consists of Salsola sect. Salsola s.s., Salsola sect. Caroxylon subsect. Coccosalsola,Salsola sect.
Obpyrifolia,Fadenia,Hypocylix,Seidlitzia, and Darniella. All species of tribe Caroxyloneae investigated so
far have C
4
photosynthesis of the NAD-malic enzyme subtype, while the majority of the species of Salsoleae
s.s. are known to be of the NADP-malic enzyme subtype.
Keywords: Caroxyloneae, Chenopodiaceae, classification, molecular phylogeny, Salsoleae, Salsoloideae.
Introduction
Chenopodiaceae is a cosmopolitan, eudicot lineage especially
diverse in arid, semiarid, saline, and hypersaline ecosystems
(Ku
¨hn et al. 1993; Hedge et al. 1997). The family is extremely
variable in its ecomorphological and anatomical types and
modes of photosynthesis (Carolin et al. 1975, 1978; Gamaley
and Voznesenskaya 1986; Pyankov et al. 1992, 1997, 2001b,
2002; Akhani et al. 1997, 2005; Jacobs 2001; Voznesenskaya
et al. 2001b, 2002; Kadereit et al. 2003; Schu
¨tze et al. 2003;
Edwards et al. 2004; Akhani and Ghasemkhani 2007). Many
members of this family are succulent and late flowering and
fruiting, which has historically made collections difficult to
identify, with many specimens lacking the necessary charac-
ters for species identification. Additionally, the high levels of
diversity in the deserts of central Asia and the Middle East
have created a limitation on investigation and collection ac-
tivities because of poor representation in Western herbaria.
The diversity of photosynthetic types and leaf anatomies in
this family, particularly the discovery of two anatomical
types that perform C
4
photosynthesis without Kranz anat-
omy in one species of Suaeda (Borszczowia) and two species
of Bienertia (Freitag and Stichler 2000, 2002; Voznesenskaya
et al. 2001b, 2002; Akhani et al. 2003, 2005), has attracted
considerable interest in this intriguing group.
The classification of Chenopodiaceae and its phylogenetic
relationships with other families have been explored by a
number of researchers using morphological and molecular
markers (Scott 1977a, 1977b, 1978; Cue
´noud et al. 2002;
Kadereit et al. 2003, 2006; Pratt 2003; Schu
¨tze et al. 2003;
Mu
¨ller and Borsch 2005; Shepherd et al. 2005; Kapralov
et al. 2006). The Salsoloideae subfamily has been circum-
scribed variously, but in recent years it has either included
tribes Sarcobateae, Suaedeae, and Salsoleae (Ku
¨hn et al.
1993) or been restricted to the tribes Camphorosmeae, Sclero-
laeneae, and Salsoleae (Kadereit et al. 2003). The Salsoloideae,
here defined as including the Salsoleae s.l. and Camphoros-
meae (including Sclerolaeneae) clades (Kadereit et al. 2003;
Pratt 2003; Kapralov et al. 2006), has been demonstrated to
be monophyletic (Kapralov et al. 2006). The monophyly of
the two Salsoleae clades in relation to the Camphorosmeae,
however, has been both questioned and poorly supported
in past studies (Pyankov et al. 2001a; Kadereit et al. 2003;
Kapralov et al. 2006).
Tribe Salsoleae includes one-third of all known genera cur-
rently recognized in the family Chenopodiaceae (32 of 98 gen-
era; sensu Ku
¨hn et al. 1993), but it is a poorly understood
lineage. Species concepts in the tribe have varied widely
among researchers, with some recognizing a large number of
species separated by relatively minor morphological differ-
ences (the Russian ‘‘splitters’’; Botschantzev 1970, 1972, 1974a,
1975b, 1976, 1977, 1981a, 1982, among others; Pratov 1986)
and others circumscribing fewer ‘‘metaspecies’’ (the European
‘‘lumpers’’; Freitag 1997), resulting in between 300 and 400
species accepted in the tribe (Botschantzev 1969a, 1969b,
1969c, 1970, 1971, 1972, 1974a, 1974b, 1975a, 1975b,
1975c, 1975d, 1976, 1977, 1980, 1981a, 1981b, 1982,
1986, 1989; Ku
¨hn et al. 1993; Freitag 1997). It is unclear
1Author for correspondence; e-mail akhani@khayam.ut.ac.ir.
2Author for correspondence; e-mail roalson@mail.wsu.edu.
Manuscript received August 2006; revised manuscript received February 2007.
931
Int. J. Plant Sci. 168(6):931–956. 2007.
Ó2007 by The University of Chicago. All rights reserved.
1058-5893/2007/16806-0011$15.00
which school might better reflect phylogenetic relationships
and monophyletic lineages, but we here test several of these
concepts by sampling multiple individuals/populations within
some of these species groups. However, several of these groups
will require more detailed population genetic and morpho-
logical studies for an understanding of species boundaries.
This tribe is Old World in distribution, with its main center
of diversity in central Asian and Middle Eastern deserts and
subdeserts, with radiations into the Mediterranean, north
and south Africa, and Australia. Some species have also been
introduced into the New World. They are mostly leaf- and
stem-succulent halophytic, xerohalophytic, xerophytic, and ru-
deral plants with diverse traits, particularly in photosynthetic
pathways and concurrent anatomical structures (Butnik et al.
1991, 2001; Akhani et al. 1997; Pyankov et al. 1997, 2001b,
2002; Voznesenskaya et al. 1999, 2001a, 2001b; Akhani and
Ghasemkhani 2007). The potential synapomorphies for the
tribe are the presence of scarious winged perianth segments
in fruit, with possible loss in some species, and utricule with
a spiral embryo. Apparently, the winged fruiting perianth is a
most successful device for wind dispersal in desert areas.
However, the presence of a wing does not occur in all genera
and may be replaced by small protuberances or may be com-
pletely absent. In this latter group, zoochory and hydrochory
dispersal mechanisms seem likely.
Generic boundaries in Salsoleae have been the subject of a
long-standing controversy (Meyer 1829; Moquin-Tandon 1840,
1849; Bunge 1862; Bentham and Hooker 1880; Volkens
1893; Iljin 1936; Ku
¨hn et al. 1993; Hedge et al. 1997). Salsola
has had a controversial subgeneric classification, and its mono-
phyly has been questioned, as has the recognition of such genera
as Climacoptera (Botschantzev 1956, 1969b; Pratov 1986),
Halothamnus (¼Aellenia) (Iljin 1936; Botschantzev 1981b),
Darniella (Brullo 1984), Fadenia (Aellen and Townsend 1972),
and Xylosalsola,Nitrosalsola,andNewcaspia (Tzvelev 1993).
Tables 1 and 2 summarize the complicated historical nomen-
clature of Salsoleae and the genus Salsola, at least for those
species included here. In the first phylogenetic analysis of
Salsoleae using internal transcribed spacer (ITS) sequences,
Pyankov et al. (2001a) revealed that Salsola is likely to be
polyphyletic, and similar results were found using rbcL se-
quences (Kadereit et al. 2003). The limited sampling of Salso-
leae in both of these studies, however, leaves many questions
regarding phylogenetic relationships and generic circumscrip-
tion in the tribe unanswered.
We use maximum parsimony and maximum likelihood
analyses of nrDNA ITS and cpDNA psbB-psbH spacer se-
quences to elucidate phylogenetic relationships in Salsoleae
to test generic monophyly. Further, we suggest a new generic
classification of the Salsoleae to more closely reflect phyloge-
netic relationships.
Material and Methods
Sampling
Most of the studied plants were collected by H. Akhani
during intensive collections since 1988 from Iran, Turkmeni-
stan, Turkey, and the United Arab Emirates. Some collections
were dried in silica gel during field studies, and additional
specimens were obtained from the herbaria GAZ (Gazy
Herbarium, Ankara, Turkey) K, LE, M, and MSB (Ludwig-
Maximilians-Universita
¨t, Mu
¨nchen, Germany) (table B1). Other
sources of samples included cultivated species in the greenhouse
of Washington State University (table B1) and nine ITS se-
quences previously published (Pyankov et al. 2001a; Kadereit
et al. 2003). Outgroups were chosen from representatives of
major lineages of the Suaedoideae and Salicornioideae (six
species in total); these lineages together have been demon-
strated to be the sister group to the Salsoloideae s.l. (Kadereit
et al. 2003; Kapralov et al. 2006). Because of amplification
failure or lack of material, we could not include the following
monotypic Salsoleae s.l. genera: Sevada Moq. (Moquin-
Tandon 1849), Iljinia Korovin ex V. Komarov (Iljin 1936),
Halarchon Bunge (1862), Physandra Botsch. (Botschantzev
1956), Traganopsis Maire et Wilczek, Nucularia Battand, and
Lagenantha Chiov. We also could not include the ditypic ge-
nus Choriptera Botsch. (¼Gyroptera). Further studies will be
necessary to resolve the phylogenetic position of these genera.
New sequences have been deposited in GenBank (acces-
sions EF453380–EF453632). The data matrix and resultant
trees have been deposited in TreeBase (accession S1737).
DNA Sequencing
DNA was isolated using a modified 23CTAB buffer
method (Doyle and Doyle 1987). Templates of the nrDNA
ITS region were prepared using the primers ITS5HP (59-AGG
TGA CCT GCG GAA GGA TCA TT-39; Suh et al. 1993) and
ITS4 (59-TCC TCC GCT TAT TGA TAT GC-39; White et al.
1990). Polymerase chain reaction (PCR) amplifications fol-
lowed the procedures described by Roalson et al. (2001). The
chloroplast psbB-psbH spacer region was amplified using
the primers psbB-psbH-f (59-AGA TGT TTT TGC TGG TAT
TGA-39) and psbB-psbH-r (59-TTC AAC AGT TTG TGT
AGC CA-39; Xu et al. 2000). PCR amplifications followed
the procedures described by Schu
¨tze et al. (2003).
The PCR products were electrophoresed using a 0.8% agarose
gel in a 0.53TBE (pH 8.3) buffer, stained with ethidium bro-
mide to confirm a single product, and purified using the PEG
precipitation procedure (Johnson and Soltis 1995). Sequencing
was performed using an ABI Prism 3730 genetic analyzer. Direct-
cycle sequencing of purified template DNAs followed manu-
facturer’s specifications, using the ABI Prism BigDye Terminator
Cycle Sequencing Ready Reaction Kit (PE Biosystems).
The two ITS sequencing primers provide sequences for
overlapping fragments that collectively cover the entire spacer
and 5.8S rDNA regions along both strands. The two psbB-
psbH sequencing primers provide near-complete overlap
along both strands. Sequencing of ITS and psbB-psbH used
the same primers that were used for amplification.
Automated DNA sequencing chromatograms were proofed
and edited and contigs were assembled using Sequencher 4.0
(Gene Codes). The ITS sequences were truncated to include
only ITS1, 5.8S, and ITS2. The psbB-psbH sequences were trun-
catedtoincludethe39end of the psbB coding region, the psbB-
psbT intergenic spacer, the psbT coding region, the psbT-psbN
intergenic spacer, the psbN coding region, and the psbN-psbH
intergenic spacer. Identification of the terminal ends and
spacer boundaries of ITS1, 5.8S, ITS2, and the psbB-psbH
932 INTERNATIONAL JOURNAL OF PLANT SCIENCES
Table 1
Historical Classifications of Salsoleae s.l. from 1829 to Present
Meyer 1829
Moquin-Tandon
1840, 1849 Bunge 1862
a
Bentham and
Hooker 1880
Volkens
1893 Boissier 1879 Ulbrich 1934 Iljin 1936
Ku
¨hn et al.
1993 This article
Anabaseae 1840 Anabaseae Salsoleae Salsoleae Salsoleae Nucularieae Salsoleae Salsoleae Salsoleae
Brachylepis Salsoleae Ofaiston (A) Horizontal
seeds
Sodinae Sodeae Traganum Salsola Haloxylon Anabasis
Anabasis Halimocnemides Noaea
Traganum
Traganum Traganum Nucularia Noaea Sympegma Arthrophytum?
Salsoleae Salsola Girgensohnia
Cornulaca
Arthrophytum Horaninowia Salsoleae Aellenia Noaea ‘‘Canarosalsola’’
Halogeton Traganum Anabasis
Seidlitzia
Horaninowia Arthrophyton Sodinae Rhaphidophyton Salsola ‘‘Collinosalsola’’
Halimocnemis Halimocnemis Brachylepis
Arthrophytum
Seidlitzia Haloxylon Horaninovia Horaninowia Halothamnus Cornulaca
Salsola Halogeton Nanophyton
Horaninovia
Salsola Seidlitzia Seidlitzia Seidlitzia Cyathobasis Cyatobasis
Schanginia Anabaseae Petrosimonia
Haloxylon
Haloxylon Salsola Salsola Ofaiston Anabasis Girgensohnia
Schoberia Cornulaca Halocharis
Salsola
Helicilla Anabaseae Aellenia Girgensohnia Halogeton Halogeton
Anabasis Halimocnemis
Helicilla
Anabasinae Noea Lagenantha Anabasis Seidlitzia Halothamnus
Brachylepis Halotis
(B) Vertical seeds
Ofaiston [Noaea]Arthrophytum Arthrophytum Arthrophytum Haloxylon
1849 Halarchon
Ofaiston
Noaea Girgensohnia Haloxylon Iljinia Iljinia Hammada? p.p.
Salsoleae Halanthium
Noaea
Girgensohnia Anabasis Anabasinae Haloxylon Nanophyton Hammada
salicornicaSodeae Gamanthus
Girgensohnia
Anabasis Brachylepis Anabasideae Nanophyton Girgensohnia
HoraninowiaHelicilla Cornulaca
Anabasis
Nanophytum Petrosimonia Ofaiston Petrosimonia Halocharis
Iljinia?Horaninovia Agathophora
Nanophyton
Petrosimonia Halocharis Noaea Halocharis Halanthium
KaliTraganum Halogeton
Petrosimonia
Halocharis Halimocnemis Girgensohnia Halimocnemis Fadenia
Lagenantha?Caroxylon
Halocharis
Halimocnemis Halotis Anabasis Halotis Sevada
NoaeaSalsola
Halimocnemis
Piptoptera Piptoptera Fredolia Piptoptera Choriptera
Nucularia?Anabaseae
Halanthium
Halanthium Halarchon Brachylepis Halanthium Rhaphidophyton
‘‘Oreosalsola’Halimocnemis
Halarchon
Halarchon Gamanthus Halimocnemideae Gamanthus Ofaiston
RhaphidophytonNanophyton
Piptoptera
Cornulaca Halanthium Nanophytum Cornulaca Cornulaca
Salsola s.s.Halocharis
Halogeton
Agathophora Cornulaca Petrosimonia Halogeton Traganum
SympegmaPhysogeton
Sympegma
Halogeton Halogeton Halocharis Sympegma Traganopsis
TraganumOfaiston Sympegma Sevada Halimocnemis Nucularia
Traganopsis?Halanthium Suaedeae Piptoptera Horaninovia
TuraniaHalogeton Hypocylix Halanthium Piptoptera
XylosalsolaNoaea Gamanthus Gamanthus
CaroxyloneaeAnabasis Halarchon Halarchon
CaroxylonBrachylepis Cornulaca Petrosimonia
ClimacopteraCornulaca Agathophora Halimocnemis
Halarchon?Halogeton Halotis
HalimocnemisMicropeplis Lagenantha
HalocharisSympegma
KaviriaSuaedoideae-Suaedeae
NanophytonHypocylix
OfaistonSevada
Piptoptera
Petrosimonia
Physandra?
Pyankovia
Note. Classification of Salsola and its segregates is given separately in table 2. Other tribes are mentioned only when a member of Salsoleae was classified under that tribe. Genera
marked with a question mark are genera of questionable status, as dealt with in this article. Several other infratribal units are not listed here. Other authors: Botschantzev (1967, 1975a,
1975b, 1975c, 1975d: Salsoleae, subtrib. Sevadinae [Sevada,Lagenantha,Fadenia,Choriptera,Gyroptera], 1977: Agathophora [=Halogeton subgen. Agathophora]).
aThe monograph dealt only with Anabaseae.
Table 2
Historical Classification of Salsola and Segregate Genera
Iljin 1936 Botschantzev (various articles)
a
Tzvelev 1993
Freitag 1997;
Hedge 1997; Rilke 1999 This article
Sect. Kali Climacoptera (1956)
3
Sect. Caroxylon subsect.
Genistoides (1976)
Salsola Freitag 1997 Sect. Belanthera 1 ‘‘Canarosalsola’’
S. kali
6
Halothamnus (1981b)
5
(No species included
in our analysis)
Sect. Kali (Mill.)
Dumort.
6
Sect. Coccosalsola
10
S. gossypina
7
2Caroxylon
S. paulsenii
6
Sect. Caroxylon subsect.
Caroxylon
2
(1974a, 1974b)
Sect. Belanthera
(1968, 1980)
Sect. Salsola
S. drummondii
10
S. brachiata
9
3Climacoptera
S. soda
10
S. zeyheri
2
S. canescens
(as S. boissieri)
9
Climacoptera
S. kerneri
10
S. vvdenskyi
7
4 ‘‘Collinosalsola’
S. aperta
6
S. araneosa
2
S. carpatha
2
Sect. Heterotricha
Iljin ex Pratov
9
Sect. Arbuscula S. canescens
2
5Halothamnus
S. deserticola
11
S. dendroides
2
S. rubescens
7
Sect. Climacoptera
3
S. richteri
12
S. aucheri
7
6Kali
Sect. Physurus
S. glabrescens
2
S. aucheri
7
Sect. Brachyphylla
Iljin ex Pratov
3
S. montana
8
S. rubescens
7
7Kaviria gen. nov.
S. lanata
3
S. cyclophylla
2
S. tomentosa
7
Nitrosalsola
2
(=Salsola
sect. Nitraria Ulbr.)
S. arbuscula
12
S. lachnantha
7
8 ‘‘Oreosalsola’
S. crassa
3
Sect. Caroxylonsubsect.
Vermiculatae
2
(1975a,
1975b, 1975c, 1975d)
S. vvdenskyi
7
Caroxylon
2
S. arbusculiformis
4
S. tomentosa
7
9Pyankovia gen. nov.
S. turcomanica
3
S. nitraria
2
S. gossypina
7
Sect. Belanthera
(Iljin) Tzvel.
Sect. Salsola Sect. Physurus
3
10 Salsola s.s.
Sect. Heterotricha
9
S. vermiculata
2
Sect. Malpigipila
2
(1969a, 1969b,1969c) Sect. Caroxylon
2
S. soda
10
S. lanata
3
11 Turania gen. nov.
S. brachiata
9
S. laricina
2
S. gemmascens
2
Sect. Malpigipila
(Botsch.) Tzvel.
2
S. aperta
11
S. crassa
3
12 Xylosalsola
Sect. Anchophyllum
S. orientalis
2
Sect. Cardiandra
(1969a, 1969b,1969c)Xylosalsola
12
S. paulsenii
6
Hedge 1997
S. arbuscula
12
S. dzhungarica
2
S. inermis
2
S. kali
6
Seidlitzia
10
S. arbusculiformis
4
Sect. Caroxylon subsect.
Coccosalsola (1976, 1989)
S. forcipitata
2
S. griffithii
6
Rilke 1999
S. montana
8
S. divaricata
1
S. chorassanica
2
Sect. Caroxylon
2
Sect. Salsola
10
S. chiwensis
12
S. kerneri
10
S. jordanicola
2
S. nitraria
2
S. soda
10
S. richteri
12
S. drummondii
(sub S. schweinfurthii)
10
S. turkestanica
2
S. dendroides
2
Sect. Sogdiana
Sect. Sphragidanthus
S. foliosa
10
Sect. Obpyrifolia
10
(Botschantzev and
Akhani 1989)
S. cyclophylla
2
S. sogdiana
11
S. subaphylla
5
S. zygophylla
10
S. drummondii
10
(sub S. obpyrifolia)
S. abarghuensis
2
S. aperta
11
S. glauca
5
Sect. Caroxylon subsect.
Arbusculae (1976)
Sect. Irania (1986)
S. vermiculata
2
Sect. Androssowia
Sect. Caroxylon
2
S. arbusculiformis
4
S. abarghuensis
2
S. orientalis
2
S. androssowi s.l.
11
S. laricina
2
S. montana
8
Subtribe Sevadinae (1975c)
Sect. Malpighipila
2
S. nitraria
2
S. masenderanica
8
Fadenia zygophylloides
10
S. gemmascens
2
S. dendroides
2
S. arbuscula
12
S. yazdiana
2
S. dzhungarica
2
S. richteri
12
Sect. Cardiandra
2
Sect. Aleuranthus
2
Sect. Caroxylon subsect.
Tetragona (1972)
2
S. forcipitata
2
S. sclerantha
2
(No species included
in our analysis)
S. chorassanica
2
Sect. Kali
6
Sect. Belanthera S. jordanicola
2
S. griffithii
6
S. gemmascens
2
S. turkestanica
2
S. tragus
6
S. aucheri
7
S. inermis
2
S. kali
6
S. vvdenskyi
7
S. paulsenii
6
S. forcipitata
2
S. gossypina
7
Sect. Cocosalsola
S. foliosa
10
Aellenia
5
A. auricula
5
Note. Only those taxa that were used in our phylogeny are listed. For a full checklist, see appendix A and references. Superscript numbers correspond to the numbers of the accepted
genera in this article (right column). Other classifications not listed included Brullo (1984): Darniella;
10
Galushko (1976): Caspia; and Woloszczak (1885): Hypocylix.
10
aReferences are given by section. Publication years of the relevant Botschantzev articles are given in parentheses.
gene regions was based on comparisons with other species
of Chenopodiaceae (Kapralov et al. 2006). Sequences were
aligned using Clustal X (Thompson et al. 1997) with gap open-
ing penalty of 10.00 and gap extension penalty of 1.00 for
both pairwise and multiple comparisons. The resultant align-
ment was then checked by eye for necessary minor corrections.
Alternate alignment parameters did not result in significantly
different topologies (data not shown). Gaps were not coded as
binary characters because of the complex nature of the gaps
in these data sets and the additional problem that they can-
not be integrated into the maximum likelihood analyses.
Phylogenetic Analyses
ITS and psb-psbH regions were analyzed separately and
in combination with both maximum parsimony (MP) and
maximum likelihood (ML) analyses. All analyses were per-
formed using PAUP* 4.0b10 (Swofford 2001). MP analyses of
the individual and combined data sets used heuristic searches
(ACCTRAN; 1000 random addition cycles, tree-bisection-
reconnection [TBR] branch swapping, limit of 10,000 re-
arrangements per addition sequence replicate). Swapping was
run to completion for all random addition replicates. Clade
support was estimated using 1000 heuristic bootstrap repli-
cates (100 random addition cycles per replicate, TBR branch
swapping, limit of 10,000 rearrangements per addition se-
quence replicate; Felsenstein 1985; Hillis and Bull 1993).
ML analyses employed heuristic searches (TBR branch
swapping). Clade support was estimated using 100 heuristic
bootstrap replicates (10 random addition cycles and 100 to-
tal rearrangements per replicate, TBR branch swapping;
Felsenstein 1985; Hillis and Bull 1993). ML analysis of the
ITS data set employed the general time-reversible model with
proportion of invariant sites (I) and gamma shape (G) param-
eters and empirical base frequencies (six substitution types:
A=C¼1:4064, A=G¼2:5332, A=T¼1:7413, C=G¼0:7280,
C=T¼3:5703, G=T¼1:0000; I¼0:2193; G¼0:9803; A ¼
0:2084, C ¼0:2519, G ¼0:2849, T ¼0:2548). ML analysis
of the psbB-psbH genetic region employed a five–rate class
transversion model with Iand Gparameters and empirical base
frequencies (five substitution types: A=C¼0:9657, A=G¼
1:3422,A=T¼0:2773, C=G¼0:7521, C=T¼1:3422, G=T¼
1:0000; I¼0:2417; G¼0:9036; A ¼0:2982, C ¼0:1616,
G¼0:1794, T ¼0:3608). ML analysis of the combined data
set employed a four–rate class transition model with Iand G
parameters and empirical base frequencies (four substitution
types: A=C¼1:0000, A=G¼1:9407, A=T¼0:8031, C=G¼
0:8031, C=T¼2:5593, G=T¼1:0000; I¼0:2700; G¼
0:7111; A ¼0:2613, C ¼0:2239, G ¼0:2239, T ¼0:2909).
These models were chosen based on the results of analysis us-
ing DT_ModSel (Minin et al. 2003). The DT_ModSel analy-
sis uses a Bayesian information criterion to select a model
using branch-length error as a performance measure in a de-
cision theory framework that also includes a penalty for
model overfitting.
Results
New ITS and psbB-psbH sequences were obtained for 132
species/accessions belonging to tribe Salsoleae s.l. and six
species of Salicornieae and Suaedeae as outgroups. The
aligned ITS data matrix was 743 base pairs (bp) long with
511 variable sites (68.8%), of which 400 (53.8%) were parsi-
mony informative. Because of poor sequencing reads of some
regions, three sequences are missing a portion (104–182 bp)
of the 59end of the ITS 1 spacer, eight sequences are missing
a portion (92 bp) of the 59end of the ITS 2 spacer, and 14 se-
quences are missing a portion (4–82 bp) of the 39end of the
ITS 2 spacer. The aligned psbB-psbH data matrix was 741 bp
long with 270 variable sites (36.4%), of which 144 (19.4%)
were parsimony informative. Because of poor sequencing reads
of some regions, nine sequences are missing a portion (1–113 bp)
of the 59end of the psbB-psbH spacer region, and 21 sequences
are missing a portion (1–121 bp) of the 39end of the psbB-psbH
spacer region.
MP analysis of the ITS Salsoleae data set resulted in 1451
most parsimonious trees (length ¼3445 steps, consistency in-
dex ½CI¼0:303, retention index ½RI¼0:741, rescaled con-
sistency index ½RC¼0:224). The ITS ML analysis resulted in
a single tree (ln L¼17800:03435, where L¼likelihood).
MP analysis of the psbB-psbH data set resulted in 11,122
most parsimonious trees (length ¼600 steps, CI ¼0:595,
RI ¼0:766, RC ¼0:456). The psbB-psbH ML analysis re-
sulted in two tied trees (ln L¼4783:22431). Strict consen-
sus trees of the MP individual data set analyses and the ML
trees of individual data set analyses are available from the
corresponding authors. MP analysis of the combined data set
resulted in 231 most parsimonious trees (length ¼4067 steps,
CI ¼0:343, RI ¼0:740, RC ¼0:254; fig. 1). The combined
ML analysis resulted in a single tree (ln L¼23216:90496;
fig. 2).
Analyses of individual data sets resulted in congruent esti-
mates of relationships, with slight differences associated with
unresolved branches and short branches with low bootstrap
support, particularly in the psbB-psbH analysis. Combined
analyses reflect the well-resolved portions of individual data
set analyses, and all branches are better supported in the
combined analysis than in either of the individual data set
analyses (trees from individual analyses in TreeBase). Given
our results that multiple alignments of individual data sets
produced congruent topologies and that there were no well-
supported conflicting branches, as well as the fact that the
clades we found are generally supported by morphological
characters, we do not consider the high levels of ITS variabil-
ity or alignment issues to reduce the ability of our analyses to
reconstruct robust phylogenetic hypotheses. MP and ML
analyses of the combined data result in congruent inferences
of relationships, with differences in resolution resulting in
slightly different placement of some species (figs. 1, 2). These
differences, however, are associated with branches with low
bootstrap support in one or both analysis types. In all analy-
ses, Salsola s.l. is clearly polyphyletic, with Salsola species
present in seven to 13 lineages or different clades, depending
on the resolution of the phylogenetic hypotheses (figs. 1, 2).
Several other genera are not monophyletic as currently cir-
cumscribed, namely, Anabasis,Halanthium,Halimocnemis,
Hammada,Gamanthus,andClimacoptera (gs.1,2).In
some cases, this is due to the misclassification of one or a
small number of species (e.g., Climacoptera brachiata; figs.
1B,2B), whereas other cases, such as the polyphyly and
935
AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l.
Fig. 1 Maximum parsimony combined data analysis strict consensus tree of 231 shortest trees (length ¼4067; consistency index ¼0:343;
retention index ¼0:740; rescaled consistency index ¼0:254). A, Outgroups and clades of Camphorosmeae and Salsoleae s.s. tribes. B,
Caroxyloneae tribe clade. Numbers above branches reflect maximum parsimony bootstrap numbers. Shaded boxes refer to species traditionally
placed in the genus Salsola. Generic abbreviations are as follows: A:¼Anabasis,B:¼Bassia,Bi:¼Bienertia,C:¼Climacoptera,Ca:¼
936
Camphorosma,Ch:¼Chenoleoides,Co:¼Cornulaca,Cy:¼Cyatobasis,F:¼Fadenia,G:¼Gamanthus,Gi:¼Girgensohnia,H:¼Halotis,
Ha:¼Halimocnemis,Hal:¼Halocharis,Hala:¼Halanthium,Halo:¼Halogeton,Halot:¼Halothamnus,Halox:¼Haloxylon,Ham:¼
Hammada,Ho:¼Horaninowia,K:¼Kochia,Ka:¼Kalidium,Ki:¼Kirilowia,L:¼Londesia,M:¼Maireana,Mi:¼Microcnemum,N:¼
Nanophyton,No:¼Noaea,O:¼Ofaiston,P:¼Panderia,Pe:¼Petrosimonia,R:¼Rhaphydophyton,S:¼Salsola,Sa:¼Salicornia,Se:¼Seidlitzia,
Su:¼Suaeda,Sy:¼Sympegma,T:¼Traganum.
937
Fig. 2 Maximum likelihood combined data analysis tree (ln L¼23216:90496). A, Outgroups and clades of Camphorosmeae and Salsoleae
s.s. tribes. B, Caroxyloneae tribe clade. Numbers above branches reflect maximum likelihood bootstrap numbers. Shaded boxes refer to species
traditionally placed in the genus Salsola. Generic abbreviations follow those in fig. 1.
938
939
interdigitation of Halanthium and Halimocnemis, are more
difficult (figs. 1B,2B).
Discussion
Tribal Classification
Because individual analyses were congruent with, although
less resolved than, the combined analyses, we will generally
refer to the combined MP and ML results in our discussion.
It seems clear from the analyses presented here that the Salso-
loideae is a monophyletic group with the Camphorosmeae
tribe the sister clade to Salsoleae s.l. (figs. 1, 2) and is well
supported by maximum parsimony bootstrap (mpbs ¼92%)
and maximum likelihood bootstrap (mlbs ¼75%). This rela-
tionship has been previously found (Kadereit et al. 2003;
Kapralov et al. 2006), although this branch was weakly sup-
ported by rbcL, and the multigene analysis of Kapralov et al.
(2006), while providing strong support (mlbs ¼86%), did
not have sufficiently extensive sampling to allow confidence
in this relationship. One previous study placed the Camphor-
osmeae as sister to a portion of the Salsoleae s.l. (our Carox-
yloneae), creating a paraphyletic Salsoleae s.l., but this result
was weakly supported (mpbs <50%; Pyankov et al. 2001a).
Furthermore, the traditional Salsoleae is clearly composed of
two strongly supported clades, here referred to as the Salso-
leae s.s. (mpbs ¼100%; mlbs ¼100%) and the Caroxylo-
neae (mpbs ¼98%; mlbs ¼98%; figs. 1, 2; see taxonomic
revision in app. A). The occurrence of two well-supported
clades in Salsoleae s.l. has been found with analyses of ITS
sequences from 34 species (Pyankov et al. 2001a) and 12 spe-
cies in rbcL analysis (Kadereit et al. 2003). The latter authors
referred to these two clades as Salsoleae I and Salsoleae II.
Both clades are well distinguished by a number of characters
(table 3). A particularly distinguishing characteristic of the
Caroxyloneae clade is the vesicular and disjunct anther ap-
pendage, which seems to occur in most groups and may be
involved in attracting insect pollinators, which have been ob-
served frequently in nature (H. Akhani, personal observa-
tion). These connectives are absent or very small in members
of Salsoleae and have been noted as a minute appendage in
Halothamnus,Noaea, and Halogeton (Kothe-Heinrich 1993;
Hedge 1997); they are rarely large as those found in Raphy-
dophytum (Iljin 1936). The two clades are also distinguish-
able based on C
4
photosynthesis subtypes: all known species
of Caroxyloneae are of the NAD-malic enzyme subtype (ta-
ble 3), and except for one doubtful case (H. Akhani, unpub-
lished data), all Salsoleae are known to be of the NADP-malic
enzyme subtype (see also Pyankov et al. 2001a, 2001b).
Classification and Relationships in Clade Salsoleae
The Salsoleae s.s. tribe is more diverse than Caroxyloneae,
both morphologically and physiologically. In this tribe, C
4
,
C
3
, and C
3
-C
4
intermediate species occur, with strong mor-
phological features separating the tribe from Caroxyloneae
(table 3). Four primary lineages or clades in Salsoleae s.s. can
be distinguished: Sympegma, the Halothamnus clade, the
Kali clade, and the Salsola clade (figs. 1A,2A). The mono-
typic Sympegma is sister to a clade composed of the rest of
the lineages of the Salsoleae s.s., although its separation is
only weakly supported (mpbs ¼62%; mlbs <50%). The or-
dering of the other three clades is not strongly supported
(mpbs <50%; mlbs <50%), but both analyses suggest that
the Kali clade is sister to a clade composed of the Halotham-
nus and Salsola clades.
The monotypic Sympegma is restricted to central Asia
and is unique in the family in having terminal glomerate
Table 3
Comparison of the Characters of the Two Major Clades of Salsoleae s.l.
Character Caroxyloneae Salsoleae s.s.
Life form Mostly annual, with some hemicryptophytes and subshrubs Mostly shrubby, subshrubby and even tree;
rarely annual
Branches and leaves Alternate (except Pyankovia and one species of Petrosimonia) Alternate in basal genera, opposite in most
advanced lineages
Assimilation organs Leaves and sometimes stems by age, never articulated Leaves and stems, often articulated
Spines at leaf apex Mostly obtuse, rarely with spine or mucro at apex Mostly with mucro or spine at apex, rarely obtuse
Cotyledon leaves Flat, linear, oblong, ovate Mostly terete and filiform
(flat in Anabasis and Halothamnus)
Indumentum Stem, leaves, and perianths with long multicellular hairs,
at least when young
Plants mostly glabrous, with a tuft of flexuose hairs
in nodes or axil of leaves and flowers
Type of indumentum Hairs various; mostly articulate, spinulose, flattened,
bladderlike, basifixed, or medifixed
Hairs papillose, unicellular; axial hairs flexuous and
multicellular, always basifixed
Anther appendage Present and mostly separated from theca and vesiculose,
discolor with anthers
Mostly absent; if present, small and nonvesiculose,
color usually concolor with anthers
Wing on fruiting
perianths Wings mostly present; absent in some genera Wings always present
Photosynthetic type Exclusively C
4
C
4
with a few C
3
and C
3
-C
4
intermediates
C
4
subtype NAD-malic enzyme NADP-malic enzyme (with few exceptions)
Ecology Plants with concentration in temperate deserts on
nitrified soil and ruderalized habitats
Plants concentrated mostly in hot deserts rich in sand,
gravel, and gypsum
Geography Mostly central and southwest Asia,
northern and southern Africa
As for Caroxyloneae but absent in southern Africa
940 INTERNATIONAL JOURNAL OF PLANT SCIENCES
inflorescence consisting of several flowers surrounded by two
or more bracts. This species is most likely to be C
3
, as sug-
gested by its Kranz-less sympegmoid leaf anatomy (Carolin
et al. 1975) and a 21.6&carbon isotope ratio. However,
the carbon isotope ratio is more positive than is typical for
C
3
species, which suggests that more studies on living plants
are necessary to exclude the possibility of it functioning as a
C
3
-C
4
intermediate.
The monophyletic Halothamnus clade probably includes
21–23 species, although only four taxa are included here.
Most species are concentrated in southwest Asia (Iran and
Afghanistan) but also occur widely in central Asia, and one
species is found in east Africa (Somalia, Ethiopia, and Dji-
bouti) (Kothe-Heinrich 1993). The monophyly of this genus is
well supported (figs. 1A,2A; mpbs ¼100%; mlbs ¼100%).
This genus can be defined by green annual branches, speci-
form inflorescence, indurated fruiting perianths that are pit-
ted in the abscission zone, presence of a hypogenous disk,
horizontal seeds, absence of Kranz anatomy in cotyledon
leaves, and presence of a short anther appendage clearly not
separated from the theca. All known species are C
4
with a
leaf anatomy lacking a hypodermis layer (Pyankov and Vakh-
rusheva 1989; Kothe-Heinrich 1993; Akhani et al. 1997).
The Kali clade is strongly supported in all analyses (mpbs ¼
97%; mlbs ¼90%). This clade assembles four previously
separate taxa in Salsoleae: the genus Traganum,Salsola sect.
Kali,Salsola sect. Sogdiana (sensu Rilke 1999), and Salsola
sect. Caroxylon subsect. Arbusculae p.p. (sensu Botschantzev
1976) or Salsola sect. Arbuscula p.p. (sensu Freitag 1997).
Besides sharing similar habitats in sandy deserts or coastal
sands, members of this clade can be defined by the combination
of morphological characteristics including succulent leaves,
nonjointed stems, apiculate to spiny leaf and bract apices,
winged fruiting perianths in most species (except Traganum),
and a cupulate or cylindrical corona above the wings of
fruiting perianths. The clade is divided into two well-
supported subclades (figs. 1A,2A). The first of these is the
Kali subclade, previously classified as Salsola sect. Kali (sensu
Rilke 1999) or Salsola sect. Salsola s.l. p.p. (Iljin 1936), and
is strongly supported (mpbs ¼99%; mlbs ¼99%). Included
here are annual or perennial species with spiny leaf tips that
lack a leaf hypodermis. The most important feature charac-
terizing this clade is the green cortex of annual shoots, which
are associated with longitudinal striae. The striate lines are
chlorenchymotous tissue interrupted by cholenchyma tissue
(Rilke 1999). Because the genus Kali Miller is validly pub-
lished (Miller 1754), it is here used for this subclade. We
here designate Kali soda Moench (Methodus 331, 1794) as
the lectotype of Kali (see app. A) against two other possibili-
ties: Kali tragus (L.) Scop., Fl. Carniol. 1: 775, 1772 (¼Salsola
tragus L., Cent. Pl. 2: 13, 1756) and Kali rosacea (L.)
Moench, suppl. Meth. Plant. 115, 1804 (¼S. rosacea L., Sp.
Pl. 222, 1753). Kali soda was validly described under Salsola
kali L., Sp. Pl.: 222, 1753, 1 yr earlier than the description of
the genus Kali in 1754 (Rilke 1999), and it is among the oldest
names of species in this genus (1753).
The second subclade of the Kali clade is a heterogeneous
assemblage of small trees, shrubs, subshrubs, and annual spe-
cies distributed in extreme deserts of central Asia and north
Africa, primarily as components of sandy ecosystems. Its
monophyly is well supported (mpbs ¼89%; mlbs ¼80%); it
is composed of species previously placed in Salsola sect.
Sogdiana (Iljin) Rilke, Salsola sect. Androssowia Rilke (sensu
Rilke 1999), Salsola sect. Caroxylon subsect. Arbusculae p.p.
(sensu Botschantzev 1976), and the monotypic genus Traga-
num. Based on the topology of the tree and distribution of
morphological features in the group, three well-supported
genera are here distinguished: Xylosalsola,Traganum, and
Turania.Xylosalsola Tzvelev includes C
4
species of Salsola
sect. Caroxylon subsect. Arbuscula p.p. (Botschantzev 1976)
or Salsola sect. Arbuscula p.p. (sensu Freitag 1997). These
are shrubby species of central Asia characterized by long te-
rete linear leaves, solitary flowers, milky white and shining
young stems, overlapping fruiting perianths that form a
corona-like structure above the winged fruiting perianths,
and presence of a minute anther appendage (Botschantzev
1976; Freitag 1997).
The small genus Traganum includes two north African/
eastern Mediterranean species, one of which is sampled here.
These are small shrubs with woolly nodes and semiterete
leaves. The fruiting perianths are indurated throughout, have
two hornlike teeth, and lack a wing. The leaves reportedly
lack a hypodermis layer (Carolin et al. 1975), which sepa-
rates this genus from other lineages in this subclade of the
Kali clade.
The third lineage of this subclade includes species previ-
ously classified in Salsola sect. Salsola (Iljin 1936) or Salsola
sect. Sogdiana (Iljin) Rilke and Salsola sect. Androssowia
Rilke (Rilke 1999). These central Asian annual species have
succulent flat or semiterete leaves with a short (0.5 mm) or
long (5 mm) spine at the apex, a leaf hypodermis layer, and
cupulate fruiting perianths that are somewhat connate at the
base and give the ovary a false-inferior appearance. Further-
more, they have filiform stigmas that are very long, up to
three to five times as long as the style. Given the clear mor-
phological circumscription of these species, we are here rec-
ognizing this clade as the genus Turania (see app. A).
The Salsola clade is a complex assemblage of genera in Sal-
soleae but is moderately supported in the phylogenetic hy-
potheses presented here (mpbs ¼72%; mlbs ¼65%). This
lineage includes taxa occurring from central and southwest
Asia to the north African and Mediterranean areas. The
monophyly of the clade is supported by several morpho-
logical features including presence of a spine or mucro on
leaf tips that sometimes appears as a caducous bristle and
most species being completely glabrous or having papillose
or tubercle-like hairs. Many groups are represented by oppo-
site leaves or branches, and stamens have no or very short
anther appendages. Many genera have been previously de-
scribed in this clade, and most of them are supported by the
phylogenetic hypotheses (figs. 1A,2A).
The genus Salsola was typified by Salsola soda (Jarvis et al.
1993; see Rilke 1999 for details), which is nested within a
homogenous group of species that have been variously placed
in several genera in previous classifications. The monophyly
of this clade is well supported (mpbs ¼84%; mlbs ¼79%).
In spite of the morphological synapomorphies that strongly
support this clade, species of this clade have been placed
by various authors in several sections of Salsola, including
sect. Salsola (Rilke 1999), sect. Obpyrifolia (Botschantzev
941
AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l.
and Akhani 1989), sect. Caroxylon subsect. Coccosalsola
(Botschantzev 1976, 1989), and sect. Coccosalsola (Freitag
1997), or have been classified into other genera, including
Seidlitzia Bunge ex Boiss. (Iljin 1954), Hypocylix Woloszczak
(Woloszczak 1885), Darniella Maire & Weiller (Brullo 1984),
Neocaspia Tzvelev (Tzvelev 1993), Caspia (Galushko 1976),
Fadenia (Aellen and Townsend 1972), and Anabasis p.p. The
most obvious synapomorphy of Salsola s.s. as treated here is
the presence of clusters of two to six flowers (or, rarely, one)
in the axil of each floral leaf. Further characters include ab-
sence or presence of a very minute anther appendage, pres-
ence of a hypogynous disk or staminode (much reduced in
S. soda), presence of a leaf hypodermis, cylindrical and ob-
tuse leaves (more often obpyriform, at least in the juvenile
state or in bracts) that are opposite in most species, and fruit-
ing perianths with well-developed wings (reduced in S. soda).
A surprising result is the inclusion of the tropical African
monotypic genus Fadenia in Salsola (Aellen and Townsend
1972). Fadenia zygophylloides is known from Kenya, Ethio-
pia, and Somalia and was previously separated from all other
species of Salsoloideae by the fruiting perianths having longi-
tudinal membranous crests. This species has been previously
classified in subtribe Sevadinae (Botschantzev 1967, 1975c;
Boulos et al. 1991). Although we have not sampled all spe-
cies of the complex, there is little doubt that all species
treated under the genus Darniella by Brullo (1984) and the
genus Seidlitzia by Iljin (1954) belong to Salsola s.s.
With the exclusion of Anabasis setifera, the rest of the ge-
nus Anabasis forms a well-supported monophyletic group
(mpbs ¼99%; mlbs ¼96%). The monophyly of this clade is
supported by the combination of several morphological fea-
tures, including a perennial and shrubby habit, a thick basal
caudex (mostly woolly), opposite leaves and branches, verti-
cal seeds, fleshy utricle that resembles a berrylike fruit in sev-
eral species, articulated branches, vestigial leaves in most
species (in Anabasis eugeniae, the leaves are developed), and
the presence of a multilayered epidermis and sunken stomata
(Bokhari and Wendelbo 1978). Ecologically, most species are
extreme xerohalophytic species and frequently grow on halo-
gypsum soils. The genus Anabasis is distributed from south-
west Europe and north Africa to the Red Sea coast (Ethiopia)
and southwest and central Asia.
The monophyly of the genus Halogeton is strongly sup-
ported by all analyses (mpbs ¼100%; mlbs ¼100%). This
is a small genus of approximately five species, including both
annual (in temperate salines and ruderal places) and peren-
nial species (in warm and hot deserts). The genus is well
defined by the combination of fleshy cylindrical leaves termi-
nating in a persistent or caducous bristle, presence of three to
several flowers in the axil of each floral leaf, presence of a
papillose staminodial disk, presence of five wings on fruiting
perianths, and membranous perianth segments. Some authors
have removed the perennial species to the genus Agathophora
(Botschantzev 1977; Hedge 1997). Our results support a mono-
phyletic clade including both annual and perennial species;
however, because only one of each is sampled here, future
studies will be necessary to explore whether the two growth
forms form monophyletic sister lineages.
Girgensohnia,Cyatobasis, and two species of Hammada
form a clade in the analyses presented here, although it is
weakly supported. The central Asian and Persian genus Gir-
gensohnia includes approximately four or five species, three
sampled in this study, and forms a monophyletic well-
supported group (mpbs ¼96%; mlbs ¼86%). Morphologically,
the genus is well defined by an annual life form, opposite
leaves and branches, presence of an indumentum of scabrid
papillae, semiamplexicaule leaves with a scarious base and
spine-tipped apex, and vertical seeds. The species of Girgen-
sohnia are ruderal and sometimes weedy species on low salty
soils in the deserts of central Asia and Iran. The monotypic
central Anatolian genus Cyatobasis was described by Aellen
(1949), who distinguished it from Girgensohnia by characters
such as elongate styles, a noncapitate stigma, and connate leaf
base. Our analyses suggest that this species, together with
Hammada articulata and Hammada griffithii, forms a grade
leading to Girgensohnia s.s. These results and shared mor-
phological characters suggest that a wider circumscription of
the genus Girgensohnia, including Cyatobasis and Hammada
p.p. and probably the other species of Arthrophytum, is ap-
propriate.
Analysis of two of the approximately six species of Cornu-
laca reveals a strongly monophyletic group (mpbs ¼100%;
mlbs ¼100%). The genus is characterized by a sturdy habit,
alternate branches, decurrent strongly spiny leaves and
bracts, presence of a dense white tuft of hairs among and at
the base of flowers, membranous perianth segments that be-
come indurated and coalescent in fruit, one (sometimes two)
terminal perianth spine, filaments connating into a tube, and
vertical seeds. Cornulaca species occur in central and south-
west Asia and northern Africa on sandy or dry soils and can
tolerate long periods of drought (H. Akhani, personal obser-
vation). The genus is sister to Horaninowia, another spiny
genus, but is clearly separated by other morphological char-
acteristics (see next paragraph).
Horaninowia is a well-supported monophyletic genus in
our analyses (mpbs ¼88%; mlbs ¼73%). There are approx-
imately seven spiny annual species that are characterized by
a green cortex, the presence of unicellular papillae, spiny-
tipped leaves and bracts, solitary flowers in hairy leaf axils,
exappendiculate anthers, perianths in fruit becoming hard-
ened in the upper middle, capitate or clavate stigmas, and
horizontal seeds (Carolin et al. 1975). Species of Horanino-
wia are restricted in their range to central Asia and Iran,
growing on sandy dunes or gravelly deserts. The phylogenetic
analyses and morphological features clearly support a close
relationship with Cornulaca (figs. 1A,2A).
The traditional circumscription of Haloxylon (Iljin 1936)
includes only tall shrub to small tree species and is well sup-
ported in these analyses (mpbs ¼100%; mlbs ¼100%). The
two species, Haloxylon ammodendron and Haloxylon persi-
cum, are found in central and southwest Asia and occur on
sandy dunes or dry salty habitats close to the margins of playas,
where their long roots have access to underground salty water
(Le
´onard 1991; Akhani et al. 2003; Akhani 2004). The com-
bination of unique tree life form with articulated branches,
horizontal seeds, occurrence of an arista at the scalelike leaf
apex, presence of a hypodermis layer in assimilating shoots,
and the isopalisade cotyledon leaves without Kranz anatomy
(Pyankov et al. 1999), characterizes the genus. Bunge (1879)
and Hedge (1997) proposed a broader circumscription of this
942 INTERNATIONAL JOURNAL OF PLANT SCIENCES
genus, including species from other genera such as Arthrophy-
tum and Hammada, but this is not supported by the phyloge-
netic hypotheses presented here (figs. 1A,2A).
The genera Hammada and Arthrophytum have been inter-
preted differently by different authors. Hedge (1997) and
Boulos (1996) considered them congeneric with Haloxylon.
The three species we have analyzed (Hammada salicornica,
Hammada articulata, and Hammada griffithii) are not closely
associated with Haloxylon and may form early lineages of
the Girgensohnia/Cornulaca/Horaninowia clade (fig. 2A), al-
though these relationships are not well supported and are
placed differently by the MP strict consensus (fig. 1A) but,
again, with little support.
The phylogenetic hypotheses presented suggest a possible
clade including the C
3
Salsola montana complex, Salsola ar-
busculiformis,Raphydophytum regelii, and the genus Noaea
(fig. 2A). This clade, however, is not strongly supported
and is not present in the MP strict consensus (fig. 1A). The
placement of the C
3
-C
4
intermediate Salsola arbusculiformis
(Voznesenskaya et al. 2001a) between Salsola montana and
Noaea,aC
4
genus, might demonstrate an interesting case of
transition in photosynthetic pathway across a clade. Given
the weak phylogenetic placement of S. arbusculiformis in the
phylogenetic hypotheses presented here, we are only infor-
mally recognizing this species as ‘‘Collinosalsola’’ and will
await further evidence of its phylogenetic position before for-
mally placing the species. The small subshrub Raphydophy-
tum is characterized by stiff and spinescent leaves that are
acicular and three-angular in cross section, with scabrid mar-
gins and a dilated base. The perianths bear wings near the
base, and the filaments produce a staminal tube with well-
developed semiorbicular lobes on the hypogynous disk.
All known species of Noaea are included in our phyloge-
netic analyses, and its monophyly is well supported (mpbs ¼
100%; mlbs ¼100%). This genus is characterized by alter-
nate branches, leaves spiny tipped or cuspidate at the base
with broad white membranous margins, and vertical seeds.
All three species grow in temperate and cold-temperate des-
erts or montane and submontane steppe vegetation, which is
not typical for C
4
species.
The S. montana complex was classified in Salsola sect. An-
chophyllum by Iljin (1936), sect. Caroxylon subsect. Arbus-
culae by Botschantzev (1976), and sect. Arbuscula by Freitag
(1997). The complex includes subshrubby species that differ
from species of previously mentioned Salsola s.l. groups in hav-
ing not only green young stems but also a sympegmoid leaf
anatomy (Akhani and Ghasemkhani 2007), filaments attached
to the disk without staminodes, and anthers divided only to
two-thirds of their length. The precise phylogenetic position of
this strongly supported clade (mpbs ¼100%; mlbs ¼100%) is
not clear, and we are therefore here treating this complex as the
informal taxonomic entity ‘‘Oreosalsola’ (see app. A).
The S. montana species complex represents an assemblage
of microspecies (Salsola maracandica Iljin, Salsola oreophila
Botsch., Salsola masenderanica Botsch., Salsola botschant-
zevii Kurbanov, Salsola flexuosa Botsch., Salsola tianschanica
Botsch., Salsola lipschitzii Botsch., Salsola junatovii Botsch.,
and S. montana Litw.), which are collectively included in a
broadly defined S. montana by Freitag (1997). We have here
examined three populations in this complex, one from Golestan
National Park (S. montana), one from the Alborz mountains
(S. masenderanica), and ‘Salsola touranica,’’ an undescribed
but likely distinct entity from the Touran Protected Area of
Iran. Members of this species complex need to be studied fur-
ther in order for us to understand where species boundaries lie
and whether one or eight or more species should be recognized.
Salsola divaricata was included in Salsola sect. Caroxylon
subsect. Coccosalsola by Botschantzev (1976, 1989). This
shrubby species is endemic to the Canary Islands and is distinc-
tive in having opposite leaves, mature leaves that are triangular
in cross section, and leaves with one layer of hypodermis, two
layers of palisade parenchyma, scattered peripheral vascular
bundles, and a central aqueous tissue. Morphologically, it is
very similar to species of Salsola s.s., but this species does not
strongly group with Salsola s.s. Given its unclear phylogenetic
position and the need to sample the similar C
3
Mediterranean/
north African/central Asian species Salsola genistoides,Salsola
webbii,andSalsola pachyphylla, no nomenclatural changes are
here proposed.
Classification and Relationships in Clade Caroxyloneae
Three major clades can be distinguished in Caroxyloneae,
which are here labeled as the Caroxylon clade (mpbs ¼88%;
mlbs ¼93%), the Kaviria clade (mpbs ¼86%; mlbs ¼87%),
and the Climacoptera clade (mpbs ¼77%; mlbs ¼83%). Two
of the three clades can be divided further into two or more
monophyletic lineages, which in most cases correspond with
traditional classifications of Salsoleae genera. However, the re-
lationship and generic circumscription of several closely related
annual genera in this clade, including Halanthium,Halimocne-
mis,Halotis,Gamanthus,Climacoptera,Piptoptera,Halocharis,
Halarchon,Petrosimonia,andPhysandra, has been controver-
sial (Pratov 1986; Akhani 1996; Hedge 1997; Assadi 2001; Gho-
badnejhad et al. 2004). These euhalophytic and xerohalophytic
species are endemic to the Irano-Turanian area, primarily in tem-
perate deserts of central Asia, Afghanistan, and Iran. Except Pet-
rosimonia, with connate cagelike anther appendages, all species
are characterized by large, often showy and colorful (white, yel-
low, or purple) vesciculate anther appendages, which apparently
act as an attractor for insect pollinators and may also contribute
as a wind-dispersal device for anthers and pollen grains, depend-
ing on the species.
The Caroxylon clade includes a large group of species tra-
ditionally classified as Salsola sects. Caroxylon p.p. (subsect.
Caroxylon, subsect. Vermiculatae), Cardiandra,Irania, and
Malpigipila and two species of sect. Belanthera (Salsola can-
escens and Salsola carpatha). The monophyly of this clade is
well supported (figs. 1B,2B). This is the most widespread
lineage of Salsoleae s.l., with ca. 140 described species, being
found in central Asia, Arabia, and northern and southern
Africa (Botschantzev 1968, 1969a,1969c, 1970, 1972, 1974a,
1974b,1975
b,1975d, 1980, 1986; Freitag 1997). Our phy-
logeny includes 19 species covering most known lineages and
geographic areas. The clade is morphologically heterogeneous,
although the presence of an acute anther appendage, winged
perianth segments, a gibbous leaf base, and a staminal disk pro-
vides a combination of characters that distinguishes the clade.
The oldest generic name for species in this clade is Caroxylon
Thunb. It was reduced to a section of Salsola by several
943
AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l.
subsequent authors (Fenzl 1851; Iljin 1936) but recognized at
the generic level by Tzvelev (1993), which is supported by our
data. Relationships within Caroxylon are generally weakly sup-
ported (figs. 1B,2B) and will require further study to clarify.
The Kaviria clade includes species traditionally classified in
Salsola sect. Belanthera (excluding S. canescens,S. carpatha,and
other microspecies classified in subsect. Kochioides by Botsch-
antzev [1968, 1980]), the oligotypic genus Halocharis,andthe
monotypic genus Nanophyton (figs. 1B,2B). The combination
of the C
3
cotyledon leaves, the absence of a leaf hypodermis, and
the presence of an acute triangular anther appendage that is sep-
arated from the thecae circumscribes this clade well, and mor-
phological and ecological features clearly separate each of these
three lineages from each other (table 4). Salsola sect. Belanthera
is here named Kaviria (see app. A) after the Persian term ‘‘Kavir,’
a name used to refer to the Iranian Great Desert.
The Climacoptera clade is composed of a lineage including
Petrosimonia and Ofaiston, which is sister to the remainder
of the clade (figs. 1B,2B). This is an exclusively Irano-Turanian
species group that predominantly occurs in annual halophytic
and xerohalophytic communities of central and southwest
Asia. Petrosimonia and Ofaiston are quite distinct morpho-
logically, and Petrosimonia is supported as monophyletic in
all analyses. Ofaiston is characterized by having only one or
two stamens and three to five perianth parts (tepals), strongly
keeled bracteoles, and small wings on two tepals (Iljin 1936).
In Petrosimonia, the anther appendages are connate at the
apex, creating a cagelike structure, and wings are completely
absent from the membranous tepals.
The remainder of the Climacoptera clade is strongly sup-
ported (mpbs ¼100%; mlbs ¼100%). All of the genera
within this clade are para- or polyphyletic, including Clima-
coptera,Gamanthus,Halanthium, and Halimocnemis (figs.
1B,2B). The majority of the members of several genera form
strongly supported clades, and clear lineages can be defined
in several cases. If Climacoptera brachiata is excluded from
the rest of the genus, Climacoptera forms a strongly sup-
ported monophyletic genus (mpbs ¼100%; mlbs ¼100%).
Climacoptera was segregated from Salsola by Botschantzev
(1956); however, it was considered as Salsola sect. Physurus
by Freitag (1997). The presence of five winged perianths in
fruit, strongly fleshy, glaucous, and mostly decurrent floral
leaves, a main central erect stem, and an interrupted Kranz
layer on the adaxial leaf surface define the genus. The num-
ber of species in this lineage is unclear, as different authors
have recognized from as many as 42 species (Pratov 1986) to
as few as six (Freitag 1997). Preliminary evidence from Iran
(H. Akhani, unpublished data) suggests that approximately
eight to 10 species are distinguishable, as opposed to only
two species recognized in Flora Iranica by Freitag (1997).
Climacoptera brachiata has been variously treated as a mem-
ber of Salsola sect. Heterotricha Iljin (Iljin 1936), Climacoptera
(Botschantzev 1956), Climacoptera sect. Heterotricha Iljin ex
Pratov (Pratov 1986), and Salsola sect. Belanthera (Freitag 1997).
Based on the characteristic opposite leaves (except uppermost
floral leaves), small obtuse anther appendage, and presence of a
spinulose indumentum with long smooth articulate hairs, it is
well separated from the other genera of the Climacoptera
Table 4
Morphological and Anatomical Comparison of Genera in the Kaviria Clade
Character Kaviria Halocharis Nanophyton
Habit Undershrub, rarely annual,
erect to ascending
Annual, prostrate Pulvinate undershrub, with
stout woody base, erect
Inflorescence
(flowers in each
floral leaf axis) Solitary Solitary to several Solitary
Indumentum Spinulose, branched, scabrid,
articulated
Articulated, scabrid hairs,
multicellular flexuous hairs
on axil of flowers
Multicelluar, smooth flexuous
hairs in leaf and flower axils
Leaf shape Terete to semiterete, succulent,
hairy or glabrous throughout
Terete, strongly succulent,
with one or a few bristlelike
hairs at apex
Semiterete to triangular in
section, spiny tipped
Leaf base Slightly gibbous Gibbous Not gibbous
Hypodermis Absent Absent Present
Central vascular
bundle (VB) VB associated with
sclerenchymatous tissue
VB lacking sclerenchymatous
tissue
VB associated with
sclerenchymatous tissue
Fruiting perianth Winged or with small
transversal line
Scarious, wingless Enlarged and inflated in
fruit but without wing
Seeds Horizontal, rarely vertical Vertical Vertical
Hypogynous disc Hypogynous disk present, without
or with short interstaminal lobes
Filaments not narrowed to base,
hypgynous disk absent
Filament not narrowed to base,
located at hypogynous disk
with staminode lobes
Anther Triangular, appendage scabrous Appendage divided to the base,
appendage vesiculous or
triangular, papillose
Anthers divided to the apex,
appendage triangular, smooth
Stigma Flat, shortly dentate Terete, not dentate Terete, not dentate
Ecology Dry gravelly and slightly salty soils High salty clay soils Xerophytic communities
944 INTERNATIONAL JOURNAL OF PLANT SCIENCES
clade. Given the isolated phylogenetic position of this species
and its distinctive combination of characteristics, we feel it is
best treated as a monotypic genus, here named Pyankovia
(see app. A) in honor of the late professor Vladimir Pyankov.
The remainder of the species in the Climacoptera clade be-
long to four genera: Gamanthus,Halanthium,Halotis, and
Halimocnemis. The relationships and generic boundaries of
these genera have been debated (Akhani 1996; Hedge 1997;
Assadi 2001; Ghobadnejhad et al. 2004). The phylogenetic
results presented here suggest the possibility of four lineages,
although the relationships among these lineages and clade
membership are generally poorly supported (figs. 1B,2B),
and whether there are consistent morphological characters
by which to define these clades is unclear. Further, there are
entanglements of the types of some genera (e.g., Gamanthus
pilosus nested within the Halanthium clade, separate from
the rest of Gamanthus). While a case could be made for ei-
ther rejecting the current lectotype of Gamanthus or renam-
ing the rest of the Gamanthus clade under a new name
(given its strong support), we consider the recognition of all
of these species within Halimocnemis to be the best option at
this time, at least until the generic boundaries and nomencla-
tural problems can be untangled. While this group is not
present in the MP strict consensus, it is present in the most
likely tree, albeit with low support (58%). Because Halimoc-
nemis and Halotis are very similar morphologically and were
previously merged by Hedge (1997), and the phylogenetic
hypotheses places Halimocnemis purpureum and Halotis pe-
dunculata among Halanthium species (see Akhani 1996;
Hedge 1997), we feel the combination of these genera to be
a reasonable compromise, despite the low branch support.
The monotypic genus Piptoptera was amplified only for
psbB-psbH, confirming that it is not a well-supported mem-
ber of any of the clades described above, which corresponds
with its morphological isolation. It is weakly placed among
Halanthium and Gamanthus species. This might suggest its
inclusion in the more broadly circumscribed Halimocnemis,
but formal inclusion in that genus will require further data,
particularly given the peculiar features of this genus of sturdy
habit with adpressed indumentum and development of two
large, circular perianthal wings.
Acknowledgments
This article is the result of a sabbatical leave of H. Akhani
supported by a grant of the University of Tehran. The field-
work was partly supported by the Geobotanical Studies in
Different Parts of Iran I–III research project, and portions of
this project were also supported by Civilian Research and
Development Foundation grant RB1-2502-ST-03. Five of the
sequenced species in this study were provided during a re-
search visit to Royal Botanical Gardens, Kew (Jodrell Labo-
ratory). H. Akhani acknowledges the financial support of
the Royal Society and the help of Mark Chase and other
staff members. We acknowledge Maraym Ghasemkhani for
her help; Ehsan Akhani, A. Beck, R. Khoshravesh, M. Dja-
mali, T. Eftekhari, C. Deigele, and H. Ziegler for providing
material from collections in Munich and Iran; C. M. Wilmot-
Dear (Kew) for correcting the Latin diagnoses; and Larry
Hufford and two anonymous reviewers for comments on a
previous version of the manuscript.
Appendix A
A Revised Classification of Salsoleae s.l.
Here we present a synopsis of generic circumscriptions and new combinations resulting from this study, where both strong
molecular and morphological support necessitate changes. To save space, we have included only the most necessary nomencla-
tural data. Therefore, most synonyms and citations are not included in this article. A detailed morphological, taxonomical, and
anatomical assessment of tribes Camphorosmeae, Caroxyloneae, and Salsoleae awaits future publication.
Tribe Salsoleae s.s.
Anabasis L., Sp. Pl. 223, 1753. Type: Anabasis aphylla L.
Includes Anabasis aphylla L., A. aretioides Moq. & Coss., A. articulata (Forssk.) Moq., A. brevifolia C. A. Mey., A. brachiata Fisch. & C. A.
Mey., A. calcarea (Charif & Aellen) Bokhari & Wendelbo, A. cretacea Pall., A. ebracteolata Korov. ex Botsch., A. ehrenbergii Schweinf. ex
Boiss., A. elatior (C. A. Mey.) Schrenk, A. eriopoda (Schrenk) Benth. ex Volkens, A. eugeniae Iljin, A. ferganica Drob., A. gypsicola Iljin, A.
haussknechtii Bunge ex Boiss., A. iranica Iljin, A. jaxartica (Bunge) Benth. ex Volkens, A. lachnantha Aellen & Rech. f., A. paucifolia M.
Pop. ex Iljin, A. pelliotii Danguy, A. macroptera Moq., A. prostrata Pomel., A. oropediorum Maire, A. salsa (C. A. Mey.) Benth. ex
Volkens, A. syriaca Iljin, A. tianschanica Botsch., A. truncata (Schrenk) Bunge, A. turkestanica Iljin & Korov., and A. turgaica Iljin &
Krasch.
Arthrophytum Schrenk, Bull. Phys. Math. Acad. Petrop. 3: 211, 1845. Type: A. subulifolium Schrenk.
Includes Arthrophytum gracile Aellen, A. iliense Iljin, A. balchaschense (Iljin) Botsch., A. lehmannianum Bunge, A. pulvinatum Litv., A.
subulifolium Schrenk, A. longibracteatum Korov., A. korovinii Botsch., and A. betpakdalense Korov. (Korovin and Mironov 1935).
Cornulaca Delile, Flore d’Egypte—explic. des planches 72, 1813. Type: Cornulaca monacantha Delile.
Includes Cornulaca alaschanica C. P. Tsien & G. L. Chu, C. aucheri Moq., C. ehrenbergii Asch., C. korshinskyi Litv., C. monacantha Delile,
and C. setifera (DC.) Moq. (Aellen 1950; Boulos 1992).
Girgensohnia Bunge ex Fenzl in Ledeb., Fl. Ross. 3: 835, 1851. Type: Girgensohnia oppositiflora (Pall.) Fenzl.
Includes Girgensohnia diptera Bunge, G. imbricata Bunge, G. minima E. Korov., and G. oppositiflora (Pall.) Fenzl.
Halogeton C. A. Mey. in Ledeb., Icon. Pl. Fl. Ross. 1: 10, 1829. Type: Halogeton glomeratus (M. Bieb.) C. A. Mey. Synonyms: Agathophora
(Fenzl) Bunge, Micropeplis Bunge.
945
AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l.
Includes Halogeton alopecuroides (Delile) Moq., H. arachnoideus Moq., H. glomeratus (M. Bieb.) C. A. Mey., H. sativus (L.) Moq., and H.
tibeticus Bunge (Bunge 1862; Botschantzev 1977).
Halothamnus Jaub. & Spach, Illustr. Pl. Or. 2: 50, tab. 136, 1845. Type: Halothamnus bottae Jaub. & Spach. Synonym: Aellenia Ulbr.
Includes Halothamnus beckettii Botsch., H. somalensis (N. E. Br.) Botsch., H. bottae Jaub. & Spach, H. iranicus Botsch., H. hierochunticus
(Bornm.) Botsch., H. iliensis (Lipsky) Botsch., H. auriculus (Moq.) Botsch., H. kermanensis Kothe-H., H. afghanicus Kothe-H., H.
lancifolius (Boiss.) Kothe-H., H. cinerascens (Moq.) Kothe-H., H. glaucus (M.Bieb.) Botsch., H. bamianicus (Gilli) Botsch., H. shurabi Botsch.,
H. turcomanicus Botsch., H. ferganensis Botsch., H. sistanicus (De Marco & Dinelli) Kothe-H., H. oxianus Botsch., H. seravschanicus Botsch.,
H. iraqensis Botsch., and H. subaphyllus (C. A. Mey.) Botsch. (Aellen 1950; Botschantzev 1981b; Kothe-Heinrich 1993).
Haloxylon Bunge, Rel. Lehm. in Me
´m. Sav. Etrang. Petersb. 7: 468, 1851. Type: Haloxylon ammodendron (C. A. Mey.) Bunge ex Fenzl.
Includes Haloxylon ammodendron (C. A. Mey.) Bunge and H. persicum Bunge ex Boiss.
Hammada Iljin, Bot. Zhurn. 33: 582, 1948. Type: Hammada leptoclada (M. Popov) Iljin.
Includes Hammada articulata (Moq.) O. Bolo
´s & Vigo, H. eigii Iljin, H. griffithii (Moq.) Iljin, H. multiflora (Moq.) Iljin, H. negevensis Iljin
& Zoh., H. ramosissima (Boiss.) Iljin, H. salicornica (Moq.) Iljin, H. schmittiana (Pomel) Botsch., H. scoparia (Pomel) Iljin, H. thomsoni
(Bunge) Iljin, and H. tamariscifolia (L.) Iljin, and H. wakhanica (Paulsen) Iljin (Iljin 1948).
Horaninowia Fisch. & C. A. Mey., Enum. Pl. Nov. Schrenk 1: 10, 1841. Type: Horaninowia ulicina Fisch. & C. A. Mey.
Includes Horaninowia anomala (C. A. Mey.) Moq., H. excellens Iljin, H. minor Fisch. & C. A. Mey., H. platyptera Charif & Aellen, H.
pungens (Gilli) Botsch., and H. ulicina Fisch. & C. A. Mey. (Aellen 1950).
Kali Mill., Gard. Dict. Abridg. Ed. 4, 1754. (¼Salsola sect. Kali Dumort; Rilke 1999). Type (lectotype selected here): Kali soda Moench,
Method 331, 1794. [Salsola kali L., Sp. Pl.: 222, 1753.
Kali australis (R. Br.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola kali R. Br. Prodr. 411, 1810.
Kali griffithii (Bunge) Akhani & E. H. Roalson, comb. nov. Basionym: Noaea griffithii Bunge, Me
´m. Acad. Imp. Sci. St. Pe
´tersb., Se
´r. 7, 4, 11:
22–23, 1862.
Kali tamariscina (Pall.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola tamariscina Pall., Illustr. Pl. 33, 1803.
Kali collina (Pall.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola collina Pall., Illustr. Pl.: 34, 1803.
Kali zaidamica (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola zaidamica Iljin, Bot. Mater. Gerb. Bot. Inst. Komarova Akad.
Nauk SSSR 17: 122–124, 1955.
Kali tamamschjanae (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola tamamschjanae Iljin, Trudy Bot. Inst. Akad. Nauk. SSSR,
ser. 1: 161, 1936.
Kali jacquemontii (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola jacquemontii Moq. in DC. Prodr. 13, 2: 188, 1849.
Kali komarovii (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola komarovii Iljin, Bot. Zhurn. SSSR 18, 2: 276, 1933.
Kali ikonnikovii (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola ikonnikovii Iljin, Izv. Glavn. Bot. Sada Akad. Nauk SSSR 30:
748, 1931.
Kali paulsenii (Litv.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola paulsenii Litv., Izv. Turkestansk. Otd. Imp. Russk. Geogr.
Obshch. 4, 5: 28, 1905 and in Sched. Herb. Fl. Ross. 5: 29, No. 1431, 1905.
Other species recognized include Kali soda Moench (¼Salsola kali L.), K. tragus (L.) Scop., and K. rosasea (L.) Moench.
Noaea Moq. in DC., Prodr. 13, 2: 207 (1849). Type: Noaea mucronata (Forssk.) Aschers. & Schweinf.
Includes Noaea major Bunge, N. minuta Boiss. & Bal., and N. mucronata (Forssk.) Aschers. & Schweinf.
Rhaphidophyton Iljin, Tr. Bot. Inst. Akad. Nauk SSSR I, Fl. Sist. Vyss. Rast. 3: 157, 1936. Type: Rhaphidophyton regelii (Bunge) Iljin.
Includes Rhaphidophyton regelii (Bunge) Iljin.
Salsola L., Sp. Pl. ed. 1: 222, 1753. Type: Salsola soda L. Synonyms: Darneilla Maire & Weiller, Fadenia Aellen & Townsend, Neocaspia
Tzvelev, Hypocylix Wol., Seidlitzia Bunge ex Boiss., Salsola sect. Coccosalsola Fenzl subsect. Coccosalsola, and S. sect. Obpyrifolia Botsch.
& Akhani (Woloszczak 1885; Iljin 1954; Aellen and Townsend 1972; Botschantzev 1976; Brullo 1984; Botschantzev 1989; Botschantzev
and Akhani 1989; Tzvelev 1993; Rilke 1999).
Salsola setifera (Moq.) Akhani, comb. nov. Basionym: Anabasis setifera Moq., Chenopod. Monogr. 164, 1840.
Salsola rosmarinus (Ehrenb. ex Boiss.) Akhani, comb. nov. Basionym: Seidlitzia rosmarinus Ehrenb. ex Boiss., Fl. Or. 4: 951, 1879.
Salsola zygophylloides (Aellen & Townsend) Akhani, comb. nov. Basionym: Fadenia zygophylloides Aellen & Townsend, Kew Bull. 27: 501,
1972.
Other species recognized include Salsola acutifolia (Bunge.) Botsch., S. cruciata Chevall. ex Batt. & Traubut, S. cyrenaica (Maire & Weiller)
Brullo, S. drummondii Ulbr., S. florida (M. Bieb.) Poir, S. foliosa (L.) Schrad., S. grandis Freitag, Vural & N. Adigu
¨zel, S. glomerata (Maire)
Brullo, S. gymnomaschala Maire, S. kerneri (Wol.) Botcsh., S. longifolia Forssk., S. makranica Freitag, S. melitensis Botsch., S. oppositifolia
Desf., S. papillosa Willk., S. schweinfurthii Solms-Laub., S. sinaica Brullo, S. soda L., S. stocksii Boiss., S. tunetana Brullo, S. verticillata
Schousboe, and S. zygophylla Batt. & Traub.
Sympegma Bunge, Bull. Acad. St. Pe
´tersb. 25: 351, 371, 1879. Type: Sympegma regelii Bunge.
Includes Sympegma regelii Bunge.
Traganum Del., Fl. E
´gypte: 204, 113–1814. Type: Traganum nudatum Del.
Includes Traganum nudatum Del. and T. moquini Webb.
Traganopsis Maire et Wilczek, Bull. Soc. Hist. Nat. Afr. N. 27: 67, 1936. Type: Traganopsis glomerata Maire & Wilczek.
Includes Traganopsis glomerata Maire & Wilczek.
Turania Akhani & E. H. Roalson, gen. nov. Type: Turania sogdiana (Bunge) Akhani; basionym: Salsola sogdiana Bunge, Me
´m. Acad. Imp. Sci.
St. Pe
´tersb. Divers Savans 7: 473, 1852. Synonyms: Salsola sect. Sogdiana (Iljin) Rilke, Rev. Sekt. Salsola Gatt. Salsola 69, 1999; S. sect.
Androssowia Rilke, Rev. Sekt. Salsola Gatt. Salsola 77, 1999.
Plantae annuae. Foliae, bracteae bracteolaeque spina terminatae. Antherae per 3/4 vel 4/5 longitudinem incisae, minute appendiculatae.
Stigmata 2 quam stylus multo (3–4 x) longioria. Flores in axilibus singulae. Tepala fructificantia alata; tubus patelliformis, induratus;
semina valde complanata. A Kali caule non striato, antheris per 3/4 vel 4/5 longitudinem (nec usque medium tantum) incisis differt.
Turania sogdiana (Bunge) Akhani, comb. nov. Basionym: Salsola sogdiana Bunge, Me
´m. Acad. Imp. Sci. St. Pe
´tersb. Divers Savans 7: 473,
1852.
946 INTERNATIONAL JOURNAL OF PLANT SCIENCES
Turania aperta (Paulsen) Akhani, comb. nov. Basionym: Salsola aperta Paulsen, Vidensk. Meddel. Dansk Naturhist. Foren. Kjøbenhavn. 6, 5:
197, 1903.
Turania androssowii (Litw.) Akhani, comb. nov. Basionym: Salsola androssowii Litv., Sched. Herb. Fl. Ross. 6: 111, No. 1890, 1908.
Turania deserticola (Iljin) Akhani, comb. nov. Basionym: Salsola deserticola Iljin, Bot. Zhurn. SSSR 18: 277, 1933.
Xylosalsola Tzvelev in Ukr. Bot. Zhurn., 50 (1): 81, 1993. Type: Salsola arbuscula Pall. Synonym: Salsola section Coccosalsola Fenzl subsection
Arbuscula (Ulbrich) Botsch. p.p.
Xylosalsola richteri (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola arborescens L. fil. var. richteri Moq. in DC., Prodr. 13, 2:
185, 1849; S. richteri (Moq.) Karel. ex Litw.
Xylosalsola paletzkiana (Litw.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola paletzkiana Litw., Sched. Herb. Fl. Ross. 50: no.
2569, 1914.
Xylosalsola chiwensis (M. Pop.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola chiwensis M. Pop. in Pochv. Issl. V Bass. R. Syr-
Dar’i i Amu-Dar’i, 1, 1915; 49; in O. et B. Fedtsch. Consp. Fl. Turk. 7: 355, 1916.
Other species recognized include Xylosalsola arbuscula (Pall.) Tzvelev.
Tribe Salsoleae incertae sedis
‘‘Canarosalsola’’: Salsola divaricata Masson ex Link.
‘‘Collinosalsola’’: Salsola arbusculiformis Drob. and S. laricifolia Turcz. ex Litw.
‘‘Oreosalsola’’: Salsola abrotanoides Bunge, S. botschantzevii Kurbanov, S. flexuosa Botsch., S. junatovii Botsch., S. lipschitzii Botsch., S.
maracandica Iljin, S. masenderanica Botsch., S. montana Litw., S. oreophila Botsch., and S. tianschanica Botsch.
Others: Salsola genistoides Juss. ex Poir., S. pachyphylla Botsch., and S. webbii Moq.
Tribe Caroxyloneae Akhani & E. H. Roalson, tribus nov. Type: Caroxylon Thunb.
A tribu Salsoleae planta plerumque tota pilosa, caulibus et foliis pilos articulatos atque interdum etiam pilos medifixos ferentibus differt. Antherae
vario modo appendiculatae, disjunctae, plerumque vesiculosae. Caules numquam articulati. Folia alterna (rarissime opposita).
For details of the differences between Salsoleae s.s. and Caroxyloneae, see table 3.
Caroxylon Thunb. Nov. Gen. ii. 37, 1782. Type: Caroxylon aphyllum (L. f.) Tzvelev (¼Salsola aphylla L.). Synonyms: Salsola sect. Caroxylon
(Thunb.) Fenzl, Salsola sect. Irania Botsch., Salsola sect. Malpighipila Botsch., Salsola sect. Cardiandra Aellen, and Nitrosalsola Tzvelev
(Botschantzev 1970, 1974a, 1974b, 1975b, 1975d, 1981a, 1986; Freitag 1997).
Caroxylon abarghuense (Assadi) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola abarghuensis Assadi, Iranian J. Bot. 2: 136,
1984.
Caroxylon aegeum (Rech. f.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola aegaea Rech. f., Denksch. Akad. Wiss. Wien, Math.-
Nat. 105, 2, Abt. 1: 67, 1943.
Caroxylon arabicum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola arabica Botsch. in Bot. Zhurn. 60(4): 499, 1975.
Caroxylon araneosum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola araneosa Botsch. in Bot. Zhurn. 58(6) 818,
1973.
Caroxylon canescens (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Noaea canescens Moq. in DC., Prodr. 13, 2: 208, 1849.
Caroxylon carpathum (P. H. Davis) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola carpatha P. H. Davis, Notes Roy. Bot. Gard.
Edinb. 21: 139, 1953.
Caroxylon chorassanicum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola chorassnica Botsch., Bot. Mat. Gerb. Inst. Bot.
Akad. Nauk Uzbek. SSR 18: 6, 1969.
Caroxylon cyclophyllum (Baker) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola cyclophylla Baker in Bull. Misc. Inform. (Kew Bull.)
1894: 340, 1894.
Caroxylon dzhungaricum (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola dzhuncarica Iljin in Trudy Bot. Inst. Akad. Nauk
SSSR, ser 1, 2: 129, 1936.
Caroxylon ericoides (M. Bieb.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola ericoides M. Bieb., Me
´m. Soc. Imp. Naturalites
Moscou 1: 141, 1806.
Caroxylon forcipitatum (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola forcipitata Ljin, Bot. Zhurn. 18: 275, 1933.
Caroxylon gaetulum (Maire) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola foetida Delile var. gaetula Maire, Bull. Soc. Hist. Nat.
Afriq. Nord, 27, 7: 257, 1936.
Caroxylon glabrescens (B. Davy) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola glabrescens B. Davy, in Man. Fl. Pl. & Ferns Pt. 1.
50: 177, 1926.
Caroxylon imbricatum (Forssk.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola imbricata Forssk., Fl. Egypt.-Arab.: 57, 1775.
Caroxylon incanescens (C. A. Mey.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola incanescens C. A. Mey. in Eichw., Pl. Casp.-
Cauc. 2: 35, 1833.
Caroxylon inermis (Forssk.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola inermis Forssk., Fl. Aegypt.-Arab. 57, 1775.
Caroxylon implicatum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola implicata Botsch., in Bot. Mater. Gerb. Bot. Inst.
Akad. Nauk Uzbeksk. SSR, 13: 6, 1952.
Caroxylon jordanicola (Eig) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola jordanicola Eig, Palest. Journ. Bot., Jerusalem Ser. 3, 3:
130, 1945.
Caroxylon littoralis (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola littoralis Moq., in DC. Prodr. 13, 2: 180, 1849.
Caroxylon nitrarium (Pall.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola nitraria Pall., Illustr. Pl.: 25, 1803. Synonym:
Nitrosalsola nitraria (Pall.) Tzvelev, in Ukr. Bot. Zhurn. 50(1): 80, 1993.
Caroxylon passerinum (Bunge) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola passerina Bunge, Linnaea 17: 4, 1843.
Caroxylon persicum (Bunge ex Boiss.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola persica Bunge ex Boiss., Fl. Or. 4: 964, 1879.
Caroxylon pulvinatum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola pulvinata Botsch., Bot. Mat. Gerb. Bot. Inst. Akad.
Nauk SSSR 22: 96, 1963.
Caroxylon scleranthum (C. A. Mey.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola sclerantha C. A. Mey., in Eichw., Pl. Nov.
Casp.-Cauc. 2: 35, 1835.
947
AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l.
Caroxylon spinescens (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola spinescens Moq., in DC., Prodr. 13(2): 179, 1849.
Caroxylon stenopterum (Wagenitz) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola stenoptera Wagenitz, in Ber. Deutsch. Bot. Ges.
72: 155, 1959.
Caroxylon tetrandrum (Forssk.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola tetrandra Forssk., Fl. Aegypt..-Arab. 58, 1775.
Caroxylon turkestanicum (Litw.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola tukestanica Litw., Trudy Bot. Muz. Akad. Nauk, 7:
78, 1910.
Caroxylon vermiculatum (L.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola vermiculata L., Sp. Pl. 223, 1753.
Caroxylon villosum (Schult.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola villosa Schult., Syst. Veg. 6: 232, 1820.
Caroxylon volkensii (Aschers & Schweinf.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola volkensii Aschers & Schweinf., in Ill. Fl.
E
´gypte 130, 1887.
Caroxylon yazdianum (Assadi) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola yazdiana Assadi, Iranian J. Bot. 2, 2: 140,
1984.
Caroxylon roshevitzii (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola roshevitzii Iljin, in Journ. Bot. URSS, 18: 277, 1933.
Other species include Caroxylon aphyllum (L.f.) Tzvelev, C. dendroides (Pall.) Tzvelev, C. foetidum Moq., C. gemmascens (Pall.) Tzvelev, C.
imbricatum Moq., C. laricinum (Pall.) Tzvelev, C. orientale (S. G. Gmel.) Tzvelev, C. tetragonum (Delile) Moq., C. verrucosum Moq., and
C. zeyheri Moq.
Climacoptera Botsch., Sborn. Posv. Akad. Sukachevu: 111, 1956. Type: Climacoptera lanata (Pall.) Botsch.
Climacoptera maimanica (Freitag) Akhani, comb. nov. Basionym: Salsola maimanica Freitag, in Fl. Iranica 172: 254, 1997.
Includes Climacoptera affinis (C. A. Mey.) Botsch., C. afghanica Botsch., C. amblyostegia Botsch., C. aralensis (Iljin) Botsch., C.
botschantzevii Pratov, C. bucharica (Iljin) Botsch., C. chorassanica Pratov, C. crassa (M. Bieb.) Botsch., C. czelekenica Pratov, C. ferganica
(Drob.) Botsch., C. glaberrima Botsch., C. intricata (Iljin) Botsch., C. iranica Pratov, C. iraqensis Botsch., C. kasakorum (Iljin) Botsch., C.
khalisica Botsch., C. korshinskyi (Drob.) Botsch., C. lachnophylla (Iljin) Botsch., C. lanata (Pall.) Botsch., C. longipistillata Botsch., C.
longistylosa (Iljin) Botsch., C. malyginii (Korov. ex Botsch.) Botsch., C. merkulowitschii (Zakir.) Botsch., C. minkwitzae (Korov.) Botsch.,
C. narynensis Pratov, C. obtusifolia (Schrenk) Botsch., C. olgae (Iljin) Botsch., C. oxyphylla Pratov, C. pjataevae Pratov, C. ptiloptera
Pratov, C. roborowskii (Iljin) Grub., C. subcrassa (M. Pop.) Botsch., C. sukaczevii Botsch., C. susamyrica Pratov, C. tyshchenkoi Pratov, C.
transoxana (Iljin) Botsch., C. turcomanica (Litv.) Botsch., C. turgaica (Iljin) Botsch., C. ustjurtensis Pratov, and C. vachschi Kinz. & Pratov
(Botschantzev 1982; Pratov 1986).
Halarchon Bunge, Me
´m. Acad. Imp. Sc. Pe
´tersb. 7. se
´r., 4, 11: 75, 1862. Type: Halarchon vesiculosum (Moq.) Bunge.
Includes Halarchon vesiculosum (Moq.) Bunge.
Halimocnemis C. A. Mey. in Ledeb., Fl. Alt. 1: 381, 1829. Type (lectotype selected here): Halimocnemis sclerosperma (Pall.) C. A. Mey., Fl. Alt.
1: 387, 1829; basionym: Polycnemum sclerospermum Pall., Reise Versch. Prov. Russ. Reich 3: 725, Tab. M, Fig. 2E, e. 1776. Synonyms:
Gamanthus Bunge, Me
´m. Acad. Imp. Sci. Saint Pe
´tersbourg 7. se
´r., 4, 11: 76, 1862; Halanthium C. Koch, Linnaea 17: 313, 1843; Halotis
Bunge, Me
´m. Acad. Imp. Sc. Pe
´tersb. 7. se
´r., 4, 11: 73, 1862.
Halimocnemis alaeflava (Assadi) Akhani, comb. nov. Basionym: Halanthium alaeflavum Assadi, Iranian J. Bot. 5, 2: 58, 1992.
Halimocnemis commixtus (Bunge) Akhani, comb. nov. Basionym: Gamanthus commixtus Bunge, Me
´m. Acad. Imp. Sc. Pe
´tersb. 7. Se
´r., 4, 11:
76, 1862.
Halimocnemis ferganica (Iljin) Akhani, comb. nov. Basionym: Gamanthus ferganicus Iljin, in Acta Inst. Bot. Acad. Sc. URSS, se
´r. 1, 2. 1936.
Halimocnemis leucophysa (Botsch.) Akhani, comb. nov. Basionym: Gamanthus leucophysus Botsch., Not. Syst. Herb. Inst. Bot. Acad. Sci.
URSS 12: 97, 1963.
Halimocnemis pedunculata (Assadi) Akhani, comb. nov. Basionym: Halotis pedunculatus Assadi, Iranian J. Bot. 5, 2: 60, 1992.
Halimocnemis pilosa (Pall.) Akhani, comb. nov. Basionym: Salsola pilosa Pall., Illustr. Pl. 28, tab. 20, 1803.
Halimocnemis rarifolia (C. Koch) Akhani, comb. nov. Basionym: Halanthium rarifolium C. Koch, Linnaea 17: 314, 1844.
Halimocnemis rosea (Trautv.) Akhani, comb. nov. Basionym: Halanthium kulpianum var. roseum Trautv., in Trudy Imp. S.-Petersburgsk. Bot.
Sada 4: 1, 1876.
Includes Halimocnemis aequipila Iljin, H. beresinii Iljin, H. gamocarpus Moq., H. glaberrima Iljin, H. karelinii Moq., H. kulpiana C. Koch,
H. lasiantha Iljin, H. latifolia Iljin, H. longifolia Bunge, H. macrantha Bunge, H. mamamensis (Bunge) Assadi, H. mironovii Botsch., H.
mollissima Bunge, H. occulta (Bunge) Hedge, H. pilifera Moq., H. purpurea Moq., H. sclerosperma (Pall.) C. A. Mey., H. smirnovii Bunge,
and H. villosa Kar. & Kir. (Botschantzev 1971; Ghobadnejhad et al. 2004).
Halocharis Moq. in DC., Prodr. 13, 2: 201, 1849. Type: Halocharis sulphurea Moq.
Includes Halocharis clavata Bunge, H. gossypina Korov. & Kinz., H. lachnantha E.Korov., H. hispida (Schrenk) Bunge, H. sulphurea (Moq.)
Moq., H. turcomanica Iljin, and H. violacea Bunge (Iljin 1949).
Kaviria Akhani & E. H. Roalson, gen. nov. Type: Kaviria tomentosa (Moq.) Akhani; basionym: Halimocnemis tomentosa Moq. Synonym:
Salsola section Belanthera Iljin, Trudy Bot. Inst. Nauk SSSR 1, 3: 158, 1937, p.p. (Revised by Botschantzev 1968, 1980).
Genus novum ad Halocharem approximatum, sed seminibus saepius horizontalibus (nec verticalibus), stigmatibus planis (nec teretibus) 6
denticulatis, perianthio non scarioso, appendice antherarum non vesiculosa, peranthio fructicanti plerumque alato, flore solitari (nec
floribus saepe pluris) differt. Planta plerumque fruticosa raro tantum annua pilis articulatis spinulossimis vel ramosis immixtis ornata.
Kaviria aucheri (Moq.) Akhani, comb. nov. Basionym: Noaea aucheri Moq. in DC., Prodr. 13, 2: 207, 1849.
Kaviria cana (C. Koch) Akhani, comb. nov. Basionym: Salsola cana C. Koch, Linnaea 22: 190, 1849.
Kaviria futilis (Iljin) Akhani, comb. nov. Basionym: Salsola futilis Iljin, Bot. Mat. Gerb. Bot. Inst. Akad. Nauk SSSR, 7: 210, 1938.
Kaviria gossypina (Bunge) Akhani, comb. nov. Basionym: Salsola gossypina Bunge in Boiss. Fl. Or. 4: 956, 1879.
Kaviria lachnantha (Botsch.) Akhani, comb. nov. Basionym: Salsola tomentosa (Moq.) Spach subsp. lachnantha Botsch., Bot. Zhurn. 53:
1448, 1968.
Kaviria pycnophylla (Brenan) Akhani, comb. nov. Basionym: Salsola pycnophylla Brenan, Kew Bull. 3: 433, 1953.
Kaviria rubescens (Franch.) Akhani, comb. nov. Basionym: Salsola rubescens Franch., in Re
´voil, Faune Fl. C¸ omalis: 60, 1882.
Kaviria tomentosa (Moq.) Akhani, comb. nov. Basionym: Halimocnemis tomentosa Moq., Hist. Me
´m. Acad. Sci. Toulouse 5: 180, 1839.
Kaviria vvdenskyi (Iljin & M. Pop.) Akhani, comb. nov. Basionym: Salsola vvedenskyi Iljin & M. Pop. in Fl. URSS 6: 876, 1936.
948 INTERNATIONAL JOURNAL OF PLANT SCIENCES
Kaviria zehzadii (Akhani) Akhani, comb. nov. Basionym: Salsola zehzadii Akhani, Sendtnera 3: 6, 1996.
Nanophyton Less., Linnaea 9: 197, 1834–1835. Type: Nanophyton erinaceum (Pall.) Bunge.
Includes Nanophyton erinaceum (Pall.) Bunge.
The identities of nine additional taxa described by Botschantzev (1975a) and Pratov (1975, 1982, 1985) need to be clarified. They include N.
botschantzevii Pratov, N. erinaceum (Pall.) Bunge subsp. karataviense Pratov, N. erinaceum (Pall.) Bunge subsp. subulifolium Pratov, N.
grubovii Pratov, N. iliense Pratov, N. mongolicum Pratov, N. narynense Pratov, N. pulvinatum Pratov, and N. saxatile Botsch.
Ofaiston Raf., Fl. Tell. 3: 46, 1837. Type: Ofaiston monandrum (Pall.) Moq.
Includes Ofaiston monandrum (Pall.) Moq.
Petrosimonia Bunge, Me
´m. Acad. Imp. Sci. St. Pe
´tersb. 7. se
´r., 4, 11: 19, 52, 1862. Type: Petrosimonia monandra (Pall.) Bunge.
Includes Petrosimonia brachiata (Pall.) Bunge, P. brachyphylla (Bunge) Iljin, P. glauca (Pall.) Bunge, P. glaucescens (Bunge) Iljin, P.
hirsutissima (Bunge) Iljin, P. litwinowii Korsh., P. nigdeensis Aellen, P. monandra (Pall.) Bunge, P. oppositifolia (Pall.) Litv., P. sibirica
(Pall.) Bunge, P. squarrosa (Schrenk) Bunge, and P. triandra (Pall.) Simonk.
Piptoptera Bunge Trudy Glavn. Bot. Sada 5: 644, 1877. Type: Piptoptera turkestana Bunge.
Includes Piptoptera turkestana Bunge.
Physandra Botsch., Sborn. Posv. Akad. Sukachevu: 114, 1956. Type: Physandra halimocnemis (Botsch.) Botsch.
Includes Physandra halimocnemis (Botsch.) Botsch.
Pyankovia Akhani & E. H. Roalson, gen. nov. Type: Pyankovia brachiata (Pall.) Akhani & E. H. Roalson; basionym: Salsola brachiata Pall.
Synonym: Climacoptera section Heterotricha Iljin ex Pratov, in Rod Climacoptera 24, 1986.
Planta annua, erecta, pilos longos articulatos atque pilos breviores spinulissimos immixtos ferentes; folia superiora floralibus exceptis opposita,
ad apicem cuspidata. Stylus brevis, ad maturitatem conicus, stigma subulata. Stamina 5; antherae lineares, per 1/3 vel 2/5 longitudinem
partitae appendicibus sessilibus albis obtusis ornatae. Perianthia fructificantia horizontalia omnia alata. Semina verticalia. Genus novum a
Climacoptera foliis oppositis, pilis spinulissimis, seminibus verticalibus differt.
Pyankovia brachiata (Pall.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola brachiata Pall., Illustr. 30, tab. 22, 1803.
Lectotype (Pratov 1986): In siccis squalidis salsis deserti australoris Volgum frequens, P. S. Pallas (LE).
Appendix B
Table B1
List of Sampled Taxa with Their Respective Vouchers and GenBank Accession Numbers
GenBank no.
Subfamily, tribe, and species Voucher of DNA source ITS psbB-psbH
Salsoloideae:
Camphorosmeae:
Bassia hyssopifolia (Pall.) O. Kuntze H. Akhani 18064. Iran: Golestan, Alagol Lake, 37°21980N, 54°349130E, 10 m,
8.10.2004.
EF453390 EF453527
Bassia eriophora (Schrad.) Aschers. H. Akhani 8381. Iran: Ilam, Mehran, 3.5.1992. EF453391 EF453528
Bassia sedoides Aschers. Kadereit et al. 2005. AY489199 ...
Camphorosma monspeliaca L. H. Akhani & M. Ghobadnejhad 15585. Iran, E Azerbaijan: 55 km NE of Tabriz toward
Ahar, 38°159390N, 46°529530E, 1571 m, 4.9.2001.
EF453392 EF453529
Camphorosma monspeliaca L. Akhani et al. 17960. Turkey: Aksaray: S of Tuz Go
¨lu
¨Lake, 17 km from Yenikent
toward Sultanhani, 38°159560N, 33°389510E, 938 m, 27.8.2004.
EF453393 EF453530
Chenoleoides tomentosa (Lowe)
Botsch. H. Akhani 16440. Canary Islands: Gran Canaria, southeastern coasts,
Faro de Arinaga, sea level, 22.9.2002.
EF453394 EF453531
Kirilowia eriantha Bunge D. Podlech 18952 (M). Afghanistan: Ghorat, Panjao to La’l,
Asgharat to Khargol, 3120 m, 29.7.1970.
EF453445 EF453574
Kochia scoparia (L.) Schrad. H. Akhani & Zangui 10114. Iran: Khorassan, 17.8.1994. EF453446 ...
Kochia stellaris Moq. Kadereit et al. 2005. AY489219 ...
Londesia eriantha Fisch. & C. A. Mey. Kadereit et al. 2005. AY489220 ...
Maireana coronata (J. M. Black) P. G.
Wilson Based on cultivated plant from Royal Botanical Gardens, Kew (origin Australia). EF453447 EF453575
Panderia pilosa Fisch. & C. A. Mey. H. Akhani 14513. Iran, Tehran: 35 km E of Eshtahard, ca. 8 km
W of Mardabad, Rude Shur, 35°429440N, 50°44926E, 1163 m, 8.12.2000.
EF453454 EF453582
Panderia pilosa Fisch. & C. A. Mey. H. Akhani et al. 17948. Turkey: Ankara, eastern side of Tuz Go
¨lu
¨Lake, 62 km S of
Sereflikochisar, 5–7 km W of Ulukisla, 38°29910N, 33°449170E, 921 m, 27.8.2004.
EF453455 EF453583
Salsoleae s.l.:
Anabasis aphylla L. H. Akhani 18072. Iran: Khorassan, easternmost parts of Golestan National Park,
near Mirzabaylu Protection Station, 37°199590N, 56°149200E, 1756 m, 9.10.2004.
EF453380 EF453517
Anabasis calcarea (Charif & Aellen)
Bokhari & Wendelbo H. Akhani 14372. Iran: Tehran, Kavir Protected Area, near Qasre Bahram, 34°449N,
52°109E, 1200 m, 27.10.2000.
EF453381 EF453518
949
AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l.
Table B1
(Continued )
GenBank no.
Subfamily, tribe, and species Voucher of DNA source ITS psbB-psbH
Anabasis eriopoda (C. A. Mey.) Benth. H. Akhani & M. Ghobadnejhad 15812. Iran: Semnan, Touran Biosphere Reserve,
19 km SW of Biarjmand toward Daqe Biar, 35°569280N, 55°429480E, 1260 m,
4.10.2001.
EF453383 EF453520
Anabasis eugeniae Iljin T. Eftekhari 10219. Iran: Semnan, ca. 28 km NW of Semnan, W of Aftar,
Khonar Forbidden Hunting, 1980 m, 11.10.1999.
EF453384 EF453521
Anabasis hausskenchtii Bunge ex Boiss. H. Akhani & M. Salimian 15339. Iran: Semnan, 19 km NW of Damghan toward
Cheshmeh Ali, 1420 m, 36°149580N, 54°99570E, 14.7.2001.
EF453386 EF453523
Anabasis hausskenchtii Bunge ex Boiss. H. Akhani & M. Ghobadnejhad 15699. Iran: Yazd: ca. 10 km W of
Taft toward Abarkuh, 31°569280N, 54°159230E, 1233 m, 18.9.2001.
EF453387 EF453524
Anabasis aff. hausskenchtii Bunge H. Akhani & M. R. Joharchi 17306. Khorassan: 65 km SE of Birjand, near Sarbisheh,
at the beginning of the road toward Doroh, 32°349260N, 59°489350E, 2.9.2003.
EF453388 EF453525
Anabasis iranica Iljin H. Akhani & M. Ghobadnejhad 15700. Iran: Yazd: ca. 10 km W of Taft toward
Abarkuh, 31°569280N, 54°159230E, 1233 m, 18.9.2001.
EF453382 EF453519
Anabasis jaxartica (Bunge) Benth.
ex Volkens H. Akhani 14078. Iran, Golestan: Southern border of Golestan National Park,
37°179500N, 55°559360E, 1240 m, 4.6.2000.
EF453385 EF453522
Anabasis setifera Moq. H. Akhani 14519. Iran, Tehran: Tehran-Qom highway, Heuze Soltan Lake,
34°59920N, 50°519220E, 840 m, 22.12.2000.
EF453389 EF453526
Climacoptera brachiata (Pall.) Botsch. Akhani 17356. Iran: Golestan: Golestan National Park, 2 km S of Dasht,
37°199260N, 55°579240E, 1403 m, 13.10.2003.
EF453403 EF453536
Climacoptera crassa (M. Bieb.) Botsch. H. Akhani & al. 18005. Turkey: Aksaray, 10 km E of Eskil toward southern
saline shores of Tuz Go
¨lu
¨Lake, 38°25950N, 33°299520E, 914 m, 28.8.2004.
EF453401 EF453534
Climacoptera glaberrima Botsch. H. Akhani 18087. Golestan: 5 km E of Maraveh Tappeh, along Atrak river,
37°549230N, 56°009360E, 230 m, 11.10.2004.
EF453396 EF453532
Climacoptera glaberrima Botsch. Based on cultivated plant originated from the same population as above Akhani
18087.
EF453400 EF453533
Climacoptera iranica Pratov Voucher lost. Iran: Golestan, 5 km E of Maraveh Tappeh, along Atrak river,
37°549230N, 56°009360E, 230 m, 11.10.2004.
EF453395 ...
Climacoptera ‘‘khalijefarsica’ H. Akhani et al. 18118. Iran: Khuzestan, Persian Gulf coasts near Bandare Imam,
30°349520N, 49°19590E, 10.12.2004.
EF453402 EF453535
Climacoptera lanata (Pall.) Botsch. H. Akhani & M. R. Joharchi 17241. Khorassan: between Torbate-Heydarieh and
Gonabad, ca. 35 km N of Gonabad, Kal Shur River, 34°409210N, 58°479100E, 856 m,
31.8.2003.
EF453404 EF453537
Climacoptera lanata (Pall.) Botsch. H. Akhani & M. R. Joharchi 16510. Iran: Khorassan, ca. 35 km E of Torbat-e Jam near
Malu, 35°129190N, 61°19170E, 820 m, 20.11.2002.
EF453398 ...
Climacoptera longipistillata Botsch. H. Akhani 18092. Golestan: 28 km W of Maraveh Tappeh, near Ghara-Gol,
37°549560N, 55°399430E, 140 m, 11.10.2004.
EF453397 ...
Climacoptera turcomanica (Litv.)
Botsch. H. Akhani 17207. Iran: Tehran, ca. 60 km Wof Tehran, Mardabad, salt flats near Rude
Shur, 35°439N, 50°449E, 1164 m, 8.8.2003.
EF453399 ...
Cornulaca aucheri Moq. H. Akhani 7964. Iran: Bushehr, 13 km after Cheghadak toward Delvar, near Gar Gur
village, sea level, 20.11.1991.
EF453405 EF453538
Cornulaca monacantha Delile H. Akhani & M. R. Joharchi 17297. Iran: Khorassan, ca. 50 km S of Birjand,
Mokhtaran, 32°289250N, 59°23980E, 1506 m, 1.9.2003.
EF453406 EF453539
Cyatobasis fruticulosa (Bunge) Aellen Turkey, M. Vural, H. Duman, Z. Aytac¸ 8012 (GAZ). Kayseri: Dortyol-Develi,
Tuzlu Topraklar, 1080 m, 19.9.1997.
EF453516 ...
Fadenia zygophylloides Aellen &
Townsend I. Friis, K. Vollesen & A. S. Hassan 4768 (K). Somalia: Gedo Region, ca. 36 km S of
Lung, 3°339N, 42°429E, ca. 200 m, 25.5.1987.
EF453513 ...
Gamanthus commixtus Bunge V. Botschantzev 15 (LE). Uzbekistan, Surkhandarja province, between Shirabad and
Zarabag, 8.10.1970.
EF453410 EF453543
Gamanthus gamocarpus (Moq.) Bunge H. Akhani 14086. Iran: Golestan, southern border of Golestan National Park, NW of
Dasht village toward Yelaq, 37°189410N, 55°589430E, 1200 m, 5.6.2000.
EF453407 EF453540
Gamanthus gamocarpus (Moq.) Bunge Cultivated based on H. Akhani 18053. Iran: Golestan, between Aghghala and
Dashliborun, 38 km N of Aghghala, 37°209430N, 54°339E, 16 m, 8.10.2004.
EF453408 EF453541
Gamanthus ‘‘khorassanicus’ H. Akhani & M. R. Joharchi 17237. Khorassan: between Torbate-Heydarieh and
Gonabad, 55 km N of Gonabad, 34°509260N, 58°519180E, 908 m, 31.8.2003.
EF453411 EF453544
Gamanthus pilosus (Pall.) Bunge Akhani & Ghobadnejhad 15551. Iran: E Azerbaijan, 52 km S of Aslanduz in the road
toward Ardabil, 39°99N, 47°389370E, 1200 m, 3.9.2001.
EF453409 EF453542
Girgensohnia imbricata Bunge H. Akhani & M. R. Joharchi 17291. Iran: Khorassan, ca. 40 km S of Birjand, 13 km
E of Majhan toward Giv, 32°339250N, 59°79540E, 1492 m, 1.9.2003.
EF453412 EF453545
Girgensohnia minima K. Korov. H. Akhani & Zangooei 10109. Iran: Khorassan, 10–11 km E of Chahchaheh along
Turkmenistan border, 700–850 m, 17.8.1994.
EF453413 EF453546
Girgensohnia oppositiflora (Pall.)
Fenzl H. Akhani & M. Ghobadnejhad 15701. Iran: Yazd, ca. 27 km W of Taft toward
Abarkuh, 31°419540N, 53°559190E, 2179 m, 18.9.2001.
EF453414 EF453547
950
Table B1
(Continued )
GenBank no.
Subfamily, tribe, and species Voucher of DNA source ITS psbB-psbH
Halanthium alaeflavum Assadi H. Akhani & M. Ghobadnejhad 15610. Iran: E Azerbaijan, 1 km W of Maraqeh toward
Bonab, 37°219110N, 46°89580E, 1383 m, 7.9.2001.
EF453416 EF453548
Halanthium mamamense Bunge H. Akhani & M. Ghobadnejhad 15531. Iran: E Azerbaijan, 10 km E of Mianeh, near
Maman, 37°279180N, 47°52930E, 1095 m, 2.9.2001.
EF453417 ...
Halanthium rarifolium C. Koch H. Akhani 16491. Iran: Semnan, SW of Touran Protected Area, ca. 15 km from Razeh
toward Torud, 35°249290N, 55°159510E, 1320 m, 14.11.2002.
EF453419 EF453550
Halanthium rarifolium C. Koch H. Akhani 17206. Iran: Tehran, ca. 60 km W of Tehran, Mardabad, salt flats near Rude
Shur, 35°439N, 50°449E, 1164 m, 8.8.2003.
EF453418 EF453549
Halanthium rarifolium C. Koch H. Akhani 17208. Iran: Tehran: ca. 60 km W of Tehran, Mardabad, salt flats near Rude
Shur, 35°439N, 50°449E, 1164 m, 29.8.2003.
EF453415 ...
Halimocnemis azarbaijanensis Assadi H. Akhani & M. Ghobadnejhad 15550. Iran: E Azerbaijan, 52 km S of Aslanduz in the
road toward Ardabil, 39°99N, 47°389370E, 1200 m, 3.9.2001.
EF453420 EF453551
Halimocnemis longifolia Bunge H. Akhani & M. R. Joharchi 17245. Iran: Khorassan, between Torbate-Heydarieh and
Gonabad, ca. 33 km N of Gonabad, 34°399510N, 58°459530E, 871 m, 31.8.2003.
EF453421 EF453552
Halimocnemis mollissima Bunge H. Akhani 17208. Iran: Tehran, ca. 60 km W of Tehran, Mardabad, salt flats near Rude
Shur, 35°439N, 50°449E, 1164 m, 8.8.2003.
EF453422 EF453553
Halimocnemis purpurea Moq. H. Akhani 9036. Iran: Ilam, ca. 25–28 km N of Mehran, Konjancham river margin,
300 m, 16.10.1993.
EF453426 EF453557
Halocharis hispida (Schrenk) Bunge H. Akhani 10179-T. Turkmenistan, 2 km N of Ashghabad, 16.9.1994. EF453429 EF453560
Halocharis sulphurea (Moq.) Moq. H. Akhani & M. Ghobadnejhad 15841. Iran: Semnan, 47 km W of Shahrud toward
Damghan, 36°15951N, 54°399400E, ca. 1140 m, 6.10.2001.
EF453427 EF453558
Halocharis violacea Bunge H. Akhani & M. R. Joharchi 17288. Khorassan: 143 km E of Qaen toward Afghanistan
border, W of Daqe Petergan, 33°319290N, 60°399120E, 644 m, 31.8.2003.
EF453428 EF453559
Halogeton alopecuroides (Delile) Moq. Originated from Arabia, cultivated in WSU. EF453430 EF453561
Halogeton glomeratus (M. Bieb.)
C. A. Mey. Voucher unknown, the same specimen used in Pyankov et al. 2001a. EF453431 EF453562
Halothamnus auriculus (Moq.) Botsch. H. Akhani 15164. Iran: Qom, at the beginning of Qom-Tehran highway, 34°419150N,
50°539200E, 962 m, 24.5.2001.
EF453433 EF453564
Halothamnus auriculus (Moq.) Botsch.
subsp. acutifolius (Moq.)
Kothe-Heinr. Akhani & Salimian 15444. Iran: Semnan, 28 km E of Shahrud toward Sabzevar,
36°269420N, 55°149210E, 1375 m, 20.7.2001.
EF453432 EF453563
Halothamnus glaucus (M. Bieb.)
Botsch. A. Ghorbani 56. Iran: Golestan, N of Golestan National Park, between Lohondor and
Soolegerd, 8.7.2002.
EF453434 EF453565
Halothamnus subaphyllus (C. A. Mey.)
Botsch. H. Akhani & M. Salimian 15445. Iran: Semnan, 28 km E of Shahrud toward Sabzevar,
36°269420N, 55°149210E, 1375 m, 20.7.2001.
EF453435 EF453566
Halotis occulta Bunge H. Akhani & M. R. Joharchi 17202. Khorassan: ca. 42 km SE of Birjand, 3 km NE of
Mokhtaran toward Razgh, 32°289420N, 59°24970E, 1558 m, 1.9.2003.
EF453423 EF453554
Halotis pedunculata Assadi H. Akhani 17217. Iran: Hormozgan, 9 km SW of Goshoon toward Tadroyeh,
27°219250N, 54°499100E, 584 m, 21.8.2003.
EF453424 EF453555
Halotis pilifera (Moq.) Botsch. H. Akhani et al. 17692. Iran: Esfahan, 12 km E of Golpayegan in the Muteh road, near
Vedagh, 33°309230N, 50°26910E, 1819 m, 9.6.2004.
EF453425 EF453556
Haloxylon ammodendron
(C. A. Mey.) Bunge ex Fenzl H. Akhani 17398. Iran: Khorassan, eastern parts of Golestan National Park, 6 km W of
Mirzabaylu toward Almeh, 37°219N, 56°119E, 1384 m, 15.10.2003.
EF453436 EF453567
Haloxylon persicum Bunge ex
Boiss. & Buhe H. Akhani & M. Ghobadnejhad 15832. Iran: Semnan, Touran Biosphere Reserve,
4 km E of Ahmadabad, 35°479N, 56°399E, ca. 1000 m, 5.10.2001.
EF453438 EF453569
Haloxylon stocksii (Boiss.)
Benth. & Hook. H. Akhani s.n. Sistan va Baluchestan, 5 km S of Negur, 25°229150N, 61°109310E,
140 m, 28.11.2005.
EF453512 ...
Hammada articulata (Moq.)
O. Bolo
`s & Vigo Based on cultivated plant from Royal Botanical Gardens, Kew. EF453440 EF453571
Hammada griffithii (Moq.) Iljin D. Podlech 32707 (MSB). Afghanistan: Samangan, Tang-I Tashqurghan, 7 km S of
Tashqurghan, 520 m, 11.11.1978.
EF453437 EF453568
Hammada salicornica (Moq.) Iljin H. Akhani 16004. Iran: Hormozgan, northern parts of Mehregan saline, 26°459490N,
54°469460E, 30 m, 21.12.2001.
EF453439 EF453570
Horaninowia platyptera
Charif & Aellen H. Akhani & M. Salimian 15442. Iran, Semnan, 28 km E of Shahrud toward Sabzevar,
36°269420N, 55°149210E, 1375 m, 20.7.2001.
EF453441 EF453572
Horaninowia pungens (Gilli) Botsch. D. Podelch 19662 (MSB). Afghanistan: Kandahar, Banks of Helmand river at Girishk,
840 m, 18.09.1970.
EF453442 ...
951
Table B1
(Continued )
GenBank no.
Subfamily, tribe, and species Voucher of DNA source ITS psbB-psbH
Horaninowia ulicina Fisch. &
C. A. Mey. H. Akhani & M. Ghobadnejhad 15833. Iran: Semnan, Touran Biosphere Reserve,
sand dunes 4 km E of Ahmadabad, 35°479N, 56°399E, ca. 1000 m, 5.10.2001.
EF453443 EF453573
Nanophyton erinaceum (Pall.) Bunge (LE). Central Asia: southwest Kyzylkum, 2.11.96. Data on collector unavailable. EF453449 EF453577
Noaea major Bunge Neubauer 4768 (M). Afghanistan: Kabul, Bande Kargha, 2000 m. EF453450 EF453578
Noaea minuta Boiss. & Ball Cultivated specimen based on H. Akhani 18095. Iran: Hamadan, 9 km NE of Hamadan
in the road toward Noubaran, 1729 m, 34°549260N, 48°3970E, 8.12.2004.
EF453451 EF453579
Noaea mucronata (Forssk.)
Asch. & Schweinf. H. Akhani 13761. Iran: Mazandaran, ca. 5 km E of Doab (Chalus road) toward Kojur,
36°289280N, 51°259130E, 657 m, 12.9.1999.
EF453452 EF453580
Ofaiston monandrum (Pall.) Moq. V. I. Vasilevich et al. 3008 (LE). Kazakhstan: Semipalatinsk, 90 km W of Ajaguza, by the
road to village Chubartau, 26.7.1965.
EF453453 EF453581
Petrosimonia brachiata (Pall.) Bunge H. Akhani & M. Salimian 14238. Iran: E Azerbaijan, northern side of Orumiyeh Lake,
W of Bandar-e Sharafkhaneh, 38°119230N, 45°279410E, 1300 m, 3.9.2000.
EF453457 EF453585
Petrosimonia glauca (Pall.) Bunge H. Akhani & M. Ghobadnejhad 15535. Iran: E Azerbaijan, 13 km E of Maman,
near salt mine, 37°259280N, 47°559580E, 1378 m, 2.9.2001.
EF453456 EF453584
Petrosimonia nigdeensis Aellen H. Akhani et al. 17925. Turkey: Ankara, 28 km N of Sereflikochisar toward Ankara,
N of Tuz Go
¨lu
¨Lake, Mogan Gol Lake, 39°89500N, 33°19940E, 895 m, 27.8.2004.
EF453458 EF453586
Piptoptera turkestana Bunge H. Akhani 5775. Iran: Esfahan, ca. 30 km ESE of Kashan, 2 km N of Abu-Zeid abad,
9.9.1989, ca. 900 m.
... EF453631
Rhaphidophyton regelii (Bunge) Iljin V. Botschantzev & Litvinova N. P. 477 (LE). Kazakhstan: Chimkent province, Karatau
mountain range, 2 km NE of village Leontjevka, valley of river Ulkan- Burul,
17.7.1980.
EF453459 EF453587
Salsola abarghuensis Assadi H. Akhani 16492. Iran: Semnan, SW of Touran Protected Area, 8 km after Razeh
toward Sahl, around Cheshmeh Morra, 35°359380N, 55°20910E, 1227 m,
14.11.2002.
EF453464 EF453591
Salsola aperta Paulsen Chopanov & Sejfulin 27.8.1976. Turkmenistan: Kunya-Urgench Region, on sand dunes
between Daryalyk and Butentau.
EF453466 ...
Salsola arbuscula Pall. H. Akhani & M. Ghobadnejhad 15826. Iran: Semnan, Touran Biosphere Reserve,
85 km SW of Biarjmand toward Torud, river bed 6 km S of Sahl, 35°359400N,
55°20940E, 1230–1240 m, 4.10.2001.
EF453467 EF453592
Salsola arbusculiformis Drob. H. Akhani 17397. Iran: Khorassan, eastern parts of Golestan National Park, 5–6 km W
of Mirzabaylu toward Almeh, 37°219160N, 56°12960E, 1350 m, 15.10.2003.
EF453468 EF453593
Salsola araneosa Botsch. Merxmu
¨ller and Giess 28372 (M). Namibia: S Lu
¨deritz, 23 km S of Grillental,
12.09.1972.
EF453461 EF453588
Salsola aucheri (Moq.) Bunge H. Akhani 17190. Iran: Golestan, southern parts of Golestan National Park,
between Sharlegh and Cheshmeh Khan, 37°189130N, 56°5910E, 1154 m, 3.8.2003.
EF453469 EF453594
Salsola canescens (Moq.) Boiss. H. Akhani 13185. Iran: Tehran, N Tehran, Golabdareh, 35°509100N,
51°269230–480E, 3.9.1998.
EF453503 EF453623
Salsola carpatha P. H. Davis W. Greuter 7835 (K). Greece, Dragona
´ra Island, 31.10.1966. EF453514 ...
Salsola chivensis M. Pop. Pyankov et al. 2001a. AF318642 ...
Salsola chorassanica Botsch. H. Akhani & M. R. Joharchi 17281. Iran: Khorassan, 143 km E of Qaen toward
Afghanistan border, W of Daqe Petergan, 33°319290N, 60°399120E, 644 m,
31.8.2003.
EF453487 EF453609
Salsola cyclophylla Baker H. Akhani 15998. Iran: Hormozgan, 10 km W of Bandar Khamir, 26°,26°569400N
55°29950E, 50 m, 20.12.2001.
EF453471 EF453596
Salsola dendroides Pallas H. Akhani 18090. Iran: Golestan, 5 km E of Maraveh Tappeh, along Atrak river,
37°549230N, 56°009360E, 230 m, 11.10.2004.
EF453472 EF453597
Salsola deserticola Iljin (S. androssowii
Litv. subsp. deserticola [Iljin] Rilke) Chopanov & Sejfulin 1.9.1976. Turkmenistan: Dargan-Ata region, on the hills
nearby southern lake Soltansardzhar.
EF453473 EF453598
Salsola divaricata Masson ex Link Based on cultivated plant originated from H. Akhani 16469. Canary Islands:
Gran Canaria, western coasts, near Agaete, 23.9.2002.
EF453474 EF453599
Salsola drummondii Ulbr. H. Akhani 17234. Iran: Hormozgan, 36 km W of Bandar Abbas, at the beginning of
Gachin village, 27°49320N, 55°549450E, 22.8.2003.
EF453475 EF453600
Salsola dzhungarica Iljin The same herbarium material cited in Pyankov et al. 2001a(no voucher available). EF453476 EF453601
Salsola foliosa (L.) Schrad. Pyankov et al. 2001a. AF318652 ...
Salsola forcipitata Iljin D. Podlech 17012 (MSB). Afghanistan: Baghlan, 8 km E of Kotal-i-Mirza Atbili,
between Aybak and Pul-i-Khumri, 1100 m, 08.10.1969.
EF453477 ...
Salsola gemmascens Pall. D. Podlech 32697 (MSB). Afghanistan: Samangan, 8 km N of road Mazar-i-Sharif to
Tashkurghan, at road to Termez, 320 m, 11.11.1978.
EF453478 ...
Salsola glabrescens B. Davy R. Story 2083 (M). South Africa: Cape, Aliwal North, banks of
Orange River, 1300 m, 10.03.47.
EF453479 EF453602
Salsola gossypina Bunge Herbarium material from Pyankov et al. 2001a. EF453480 EF453603
Salsola gossypina Bunge H. Akhani & Zangooi 10088. Iran: Khorasan, 24 km from Chahchaheh toward
Kalat-e Naderi, 700–720 m, 17.8.1994.
EF453481 EF453604
952
Table B1
(Continued )
GenBank no.
Subfamily, tribe, and species Voucher of DNA source ITS psbB-psbH
Salsola griffithii (Bunge)
Freitag & Khani H. Akhani et al. 17823. Iran: Kerman, ca. 7 km N of Faryab, sandy dunes near
Hoore Olia village, 28°99180N, 57°16930E, 674 m, 14.6.2004.
EF453482 EF453605
Salsola inermis Forssk. H. Akhani 5561. Iran: Ilam, 5 km SW of Dehloran, 170 m, 6.8.1989. EF453465 ...
Salsola inermis Forssk. H. Akhani et al. 17963. Turkey: Aksaray, salt flats S of Tuz Go
¨lu
¨Lake, 17 km from
Yenikent toward Sultanhani, 38°159560N, 33°389510E, 938 m, 27.8.2004.
EF453483 ...
Salsola jordanicola Eig H. Akhani 7947. Iran: Fars, 11 km in the road from Konartakhteh toward Borazjan,
300–400 m, 20.11.1991.
EF453484 EF453606
Salsola jordanicola Eig H. Akhani & M. R. Joharchi 17236. Iran: Khorassan, between Torbate-Heydarieh and
Gonabad, 55 km N of Gonabad, 34°509260N, 58°519180E, 908 m, 31.8.2003.
EF453485 EF453607
Salsola kali L. Pyankov et al. 2001a; Kapralov et al. 2006. AF318646 DQ499431
Salsola kerneri (Wol.) Botsch. H. Akhani 15045. Iran: Tehran, 20 km S of Behesht-e Zahra toward Hasanabad,
35°249N, 51°199E, 1300 m, 3.5.2001.
EF453486 EF453608
Salsola lachnantha (Botsch.) Botsch. H. Akhani 9022. Iran: Ilam, ca. 25 km from Salehabad in the road toward Mehran,
16.10.1993.
EF453488 EF453610
Salsola laricina Pallas H. Akhani et al. 17966. Turkey: Aksaray, ruderal places near Sultanhani, 39°159400N,
33°329210E, 956 m, 28.8.2004.
EF453470 EF453595
Salsola masenderanica Botsch. H. Akhani 17403. Iran: Mazandaran, 169 km to Tehran, 5 km after Veresk toward
Amol, 35°569530N, 53°009200E, 1201 m, 16.10.2003.
EF453504 EF453624
Salsola montana Litw. H. Akhani 17391. Iran: Golestan, southern parts of Golestan National Park,
near Sharlegh, 15.10.2003.
EF453489 EF453611
Salsola montana Litw. Cultivated based on seeds originated from Iran: Golestan National Park. EF453490 EF453612
Salsola nitraria Pallas H. Akhani et al. 17946. Turkey: Ankara, eastern side of Tuz Go
¨lu
¨Lake, 14 km S of
Sereflikochisar, 38°489130N, 33°369400E, 919 m, 27.8.2004.
EF453491 EF453613
Salsola orientalis S. G. Gmelin H. Akhani 16498. Iran: Semnan, 38 km E of Khors toward Chajam, S of Kavire Haj Ali
Qoli, 35°489220N, 54°579100E, 1098 m, 14.11.2002.
EF453492 EF453614
Salsola orientalis S. G. Gmlein Cultivated plant originated from central Asia. EF453493 EF453615
Salsola paulsenii Litw. Pyankov et al. 2001a. AF318647 ...
Salsola richteri (Moq.) Karel. ex Litw. Cultivated from a central Asian origin. EF453494 EF453616
Salsola rubescens Franch. H. Akhani 9117. United Arab Emirates: ca. 23 km S of Al-Ain, near Jebel Hafit
(Hafit Mont), 350 m, 15.12.1990.
EF453495 ...
Salsola soda L. H. Akhani 15901. Iran: Tehran, Tehran-Saveh, Rude Shur, 9.11.2001. EF453496 EF453617
Salsola soda L. H. Akhani 18045. Iran: Golestan, N Gomishan, 37°109140N, 54°3940E, 13 m,
8.10.2004.
EF453497 EF453618
Salsola tomentosa (Moq.) Spach H. Akhani & M. Ghobdnejhad 15632. Iran: E Azerbaijan, 10 km SW of Sarab in the
road toward Asbforoushan, 37°52970N, 47°309300E, 1700 m, 8.9.2001.
EF453499 EF453620
Salsola tomentosa (Moq.) Spach H. Akhani 18080. Iran: Golestan, 70 km S of Maraveh Tappeh, near Golidagh,
37°419430N, 56°49190E, 979 m, 11.10.2004.
EF453500 EF453621
Salsola ‘‘touranica’ H. Akhani & M. Ghobadnejhad 15808. Iran: Semnan, Touran Biosphere Reserve,
above Qaaleh Bala, 36°009150N, 56°009410E, 1350 m, 4.10.2001.
EF453505 EF453625
Salsola tragus L. (published under
S. australis R. Br.) Pyankov et al. 2001a. AF318648 ...
Salsola turkestanica Litw. H. Akhani & M. Ghobadnejhad 15821. Iran: Semnan, Touran Biosphere Reserve,
80 km SW of Biarjmand toward Torud, river bed near Sahl, 35°39910N, 55°189240E,
1351 m, 4.10.2001.
... EF453632
Salsola vermiculata L. H. Akhani 18102. Iran: Kermanshah, 35 km from Gilanegharb toward Sumar,
33°57960N, 45°569550E, 630 m, 9.12.2004. ITS based on cultivated plant
from the same collection.
EF453501 EF453622
Salsola vvdenskyi Iljin & M. Popov D. Podlech 17001 (M). Afghanistan: Mazar-i Sharif, 2 km NW of Ghaznigak,
near the road to Haibak (Aybak), 700 m.
EF453462 EF453589
Salsola yazdiana Assadi H. Akhani & M. Dehghani s.n. Esfahan: 32 km S of Jandagh toward Chupanan,
33°479120N, 54°259180E, 1004 m, 27.10.2005.
EF453515 ...
Salsola zehzadii Akhani H. Akhani, 10029. Iran: Khorassan: ca. 35 km E of Torbat-e Jam near Malu,
35°129190N, 61°19170E, 15.8.1994.
EF453463 EF453590
Salsola zehzadii Akhani H. Akhani & Zangui 10043. Khorasan: ca. 38 km E of Torbat-e Jam,
11 km after Mohammad-abad toward Maloo, gypsum hills, 720–740 m, 15.8.1994.
EF453498 EF453619
Salsola zeyheri (Moq.) Bunge Giess, Volk & Bleissner 5349a (M). Namibia: S Luederitz; Farm Zebrafontein,
LU 87, 21.02.1963.
EF453502 ...
Salsola zygophylla Batt. et Trab. Pyankov et al. 2001a. AF318651 ...
Seidlitzia florida (M. Bieb.)
Bunge ex Boiss. H. Akhani & M. Ghobadnejhad 15630. Iran: E Azerbaijan, 10 km SW of Sarab in the
road toward Asbforoushan, 37°52970N, 47°309300E, 1700 m, 8.9.2001.
EF453507 EF453627
Seidlitzia rosmarinus Ehrenb. ex Boiss. H. Akhani, s.n. Iran: Tehran, between Tehran and Qom, W of Heuz-Soltan Lake,
35°2960N, 50°519470E, 861 m, 23.7.2003.
EF453506 EF453626
Sympegma regelii Bunge V. Bochantzev et al. 5229 (LE). Kyrgystan: Issykkulj province, Gionskij region,
Mountain range Terskej Alatoo, northern slopes around village Kadanisaj.
EF453510 EF453629
953
Literature Cited
Aellen P 1949 Zur systematischen Stellung von Girgensohnia fruti-
culosa Bge. Candollea 12:157–162.
——— 1950 Ergebnisse einer botanisch-zoologischen Sammelreise
durch den Iran 1948/49: Botanische Ergebnisse I Chenopodiaceae:
Cornulaca,Anthochlamys,Aellenia,Horaninowia. Verh Natur-
forsch Ges Basel 61:157–198.
Aellen P, CC Townsend 1972 Fadenia—a new genus of Chenopo-
diaceae from Tropical Africa. Kew Bull 27:501–503.
Akhani H 1996 A new species and a synonym in Chenopodiaceae
from Iran. Sendtnera 3:5–11.
——— 2004 Halophytic vegetation of Iran: towards a syntaxonom-
ical classification. Ann Bot (Rome) 4:66–82.
Akhani H, J Barroca, N Koteeva, E Voznesenskaya, V Franceschi, G
Edwards, SM Ghaffari, H Ziegler 2005 Bienertia sinuspersici
(Chenopodiaceae): a new species from southwest Asia and discov-
ery of a third terrestrial C
4
plant without Kranz anatomy. Syst Bot
30:290–301.
Akhani H, M Ghasemkhani 2007 Diversity of photosynthetic organs
in Chenopodiaceae from Golestan National Park (NE Iran) based
on carbon isotope composition and anatomy of leaves and coty-
ledons. Beih Nova Hedw 131:265–277.
Akhani H, M Ghobadnejhad, SM Hashemi 2003 Ecology, biogeog-
raphy and pollen morphology of Bienertia cycloptera Bunge ex
Boiss. (Chenopodiaceae), an enigmatic C
4
plant without Kranz
anatomy. Plant Biol 5:167–178.
Akhani H, P Trimborn, H Ziegler 1997 Photosynthetic pathways in
Chenopodiaceae from Africa, Asia, and Europe with their ecolog-
ical, phytogeographical and taxonomical importance. Plant Syst
Evol 206:187–221.
Assadi 2001 Chenopodiaceae. Pages 27–65 in M Assadi, M Kha-
tamsaz, AA Maassoumi, eds. Flora of Iran. Vol 38. Research
Institute of Forests and Rangelands, Tehran.
Bentham G, JD Hooker 1880 Genera plantarum. Vol 3. Reeve,
London. Pages 43–78.
Boissier E 1879 Flora orientalis. Vol 4. Georg, Gene
`ve/Basel.
Bokhari MH, P Wendelbo 1978 On anatomy, adaptations to xero-
phytism and taxonomy of Anabasis inclusive Esfandiaria (Cheno-
podiaceae). Bot Not 131:279–292.
Botschantzev VP 1956 Sbornik rabot po geobotanike, lesovedeniju,
paleogeografii floristike: dva novykh roda iz semeistva marevykh.
Akademia Nauk SSSR, Akademiku V. N. Sukachevu k 75-leti so dnja
rozdenija. Pages 108–118. Izdatel’stvo Akademia Nauk SSSR, Moscow.
——— 1967 Sevadinae Botsch., a new subtribe of the family
Chenopodiaceae. Bot Zhurn 52:800–810. (In Russian.)
——— 1968 A review of the species belonging to the section
Belanthera Iljin of the genus Salsola L. Bot Zhurn 53:1440–1450.
(In Russian.)
——— 1969aConspectus specierum sectionis Cardiandra Aellen
generis Salsola L. Nov Sist Vys Rast 6:53–63.
——— 1969bThe genus Salsola: a concise history of its development
and dispersal. Bot Zhurn 54:989–1001. (In Russian.)
——— 1969cMalpigipila Botsch.: generis Salsola L. sectio nova.
Nov Sist Vys Rast 6:45–52.
——— 1970 Sectionis Caroxylon (Thungb.) Fenzl generis Salsola L.
species annuae. Nov Sist Vys Rast 7:142–145.
——— 1971 Notulae de nomenclatura. 3. Nov Sist Vys Rast 8:
261–263.
——— 1972 Species subsectionis Tetragona (Ulbrich) Botsch. sectio-
nis Caroxylon (Thunbg.) Fenzl generis Salsola L. Nov Sist Vys Rast
9:140–154.
——— 1974aSpecies subsectionis Caroxylon sectionis Caroxylon
(Thunb.) Fenzl generis Salsola L. Nov Sist Vys Rast 11:110–174.
——— 1974bA synopsis of Salsola (Chenopodiaceae) from south
and south-west Africa. Kew Bull 29:597–614.
Table B1
(Continued )
GenBank no.
Subfamily, tribe, and species Voucher of DNA source ITS psbB-psbH
Traganum nudatum Del. S. Chaudhary 8644 (LE). Saudi Arabia: Haayer, 16.4.1984. EF453511 EF453630
Salicornioideae:
Salicornieae:
Kalidium caspicum (L.) Ungern-Sternb. H. Akhani 15329. Iran: Semnan, Alborz mountains, 67 km W of Damghan in the
road toward Cheshmeh Ali, 1822 m, 36°69190N, 53°479270E, 14.7.2001.
EF453444 ...
Microcnemum corraloides
(Loscos & Pardo) Buen H. Akhani & M. Ghobadnejhad 15491. Iran: Arak (Ostan-e Markazi), northwestern
parts of the Kavir-e Meyghan, near Deh-e Namak, 33°559N, 49°199E, 1688 m,
19.8.2001.
EF453448 EF453576
Salicornia persica Akhani H. Akhan & M. Ghobadnejhad 15719. Iran: Fars, N of Tashk lake, high salty soils
near Gomban, 29°489N, 53°289E, 1590 m, 20.9.2001.
EF453460 ...
Suaedoideae:
Bienertieae:
Bienertia sinuspersici Akhani H. Akhani 17433. Iran: Khuzestan, 17 km N of Bandare Mahshahr, 30°3995N,
49°159510E, 28 m, 31.10.2003.
DQ499349 DQ499434
Suaedeae:
Suaeda cuculata Aellen H. Akhani et al. 17920. Turkey: Ankara, 28 km N of Sereflikochisar toward Ankara,
NofTzuGo
¨lu
¨Lake, 39°89500N, 33°19940E, 895 m, 27.8.2004.
EF453509 ...
Suaeda maritima (L.) Dum. H. Akhani & M. Ghobadnejhad 15492. Iran: Arak (Ostan-e Markazi), northwestern
parts of the Kavir-e Meyghan, near Deh-e Namak, 33°559N, 49°199E, 1688 m,
19.8.2001.
EF453508 EF453628
Note. The vouchers, unless otherwise indicated, are deposited in TUH and the School of Biology, University of Tehran, Research Laborartory of Plant System-
atics and Plant Geography (H. Akhani). Herbarium abbreviations: GAZ ¼Gazy Herbarium, Ankara, Turkey; K ¼Royal Botanic Gardens, Kew, United Kingdom;
LE ¼V:L. Komarov Botanical Institute, St. Petersburg, Russia; M ¼Botanische Staatssammlung Mu
¨nchen, Mu
¨nchen, Germany; MSB ¼Ludwig-Maximilians-
Universit¨
at, Mu
¨nchen, Germany. ITS ¼internal transcribed spacer.
954 INTERNATIONAL JOURNAL OF PLANT SCIENCES
——— 1975aThe new Chenopodiaceae from Middle Asia. Bot
Zhurn 60:1158–1160. (In Russian.)
——— 1975bSpecies subsectionis Vermiculatae Botsch. Sectionis
Caroxylon (Thunb.) Fenzl, Generis Salsola L. Nov Sist Vys Rast 12:
160–194.
——— 1975cSpecies of the subtribe Sevadinae (Chenopodiaceae).
Kew Bull 30:367–370.
——— 1975dSubsectio Distichae Botsch. Sectionis Caroxylon
(Thunb.) Fenzl generis Salsola. Nov Sist Vys Rast 12:194–196.
——— 1976 Conspectus specierum sectionis Coccosalsola Fenzl
generis Salsola L. Nov Sist Vys Rast 13:74–102.
——— 1977 The genus Agathophora (Fenzl) Bunge (Chenopodia-
ceae). Bot Zhurn 62:1447–1452. (In Russian.)
——— 1980 Species sectionis Belanthera Iljin generis Salsola L. Nov
Sist Vyss Rast 17:112–135.
——— 1981aNew species of the genus Salsola L. (Chenopodiaceae)
from south and south-west Africa, V. Bot Zhurn 66:1036–1040. (In
Russian.)
——— 1981bRevisio generis Halothamnus Jaub. et Spach (Cheno-
podiaceae). Nov Sist Vys Rast 18:146–176.
——— 1982 Species novae e familia Chenopodiaceae. Nov Sist Vyss
Rast 19:74–81.
——— 1986 Irania, a new section of the genus Salsola (Chenopo-
diaceae). Bot Zhurn 71:1400–1401. (In Russian.)
——— 1989 De genere Darniella Maire et Weiller et relationes ejus ad
genus Salsola L. (Chenopodiaceae). Nov Sist Vys Rast 26:79–90.
Botschantzev VP, H Akhani 1989 A new section and a new species of
the genus Salsola (Chenopodiaceae) from Southern Iran. Bot Zhurn
74:1664–1666. (In Russian.)
Boulos L 1992 Studies in the Chenopodiaceae of Arabia. 5. Notes on
Agathophora (Fenzl) Bunge and Cornulaca Del. Kew Bull 47:283–
287.
——— 1996 Chenopodiaceae. Pages 233–283 in AG Miller, TA
Cope, eds. Flora of the Arabian Peninsula and Socotra. Vol 1.
Edinburgh University Press, Edinburgh.
Boulos L, I Friis, MG Gilbert 1991 Notes on the Chenopodiaceae of
Ethiopia, Somalia and Southern Arabia. Nord J Bot 11:309–316.
Brullo S 1984 Taxonomic consideration on the genus ‘‘Darniella’’
(Chenopodiaceae). Webbia 38:301–328.
Bunge A 1862 Anabasearum revisio. Me
´m Acad Imp Sci St Petersb
11:1–104.
——— 1879 Enumeratio Salsolacearum centralasiaticarum. Trudy
Imp St Petersb Bot Sada 6:403–459.
Butnik AA, OA Ashurmetov, RN Nygmanova, SA Paizieva 2001
Ecological anatomy of desert plants of Middle Asia. Vol 2.
Subshrubs, subshrublets. Academy of Science of Uzbekistan Re-
public, Scientific Centre of Plant Production ‘‘Botanika.’’ Fan,
Tashkent. (In Russian.)
Butnik AA, RN Nygmanova, SA Paizieva, DK Saidov 1991 Ecolog-
ical anatomy of desert plants of Middle Asia. Vol 1. Trees, shrubs,
subshrubs. Academy of Science of Uzbekistan Republic, Scientific
Centre of Plant Production ‘‘Botanika.’’ Fan, Tashkent. (In Russian.)
Carolin RC, SWL Jacobs, M Vesk 1975 Leaf structure in Chenopo-
diaceae. Bot Jahrb Syst 95:226–255.
——— 1978 Kranz cells and mesophyll in the Chenopodiales. Aust J
Bot 26:683–698.
Cue
´noud P, V Savolainen, LW Chatrou, M Powell, RJ Grayer, MW
Chase 2002 Molecular phylogenetics of the Caryophyllales based
on 18S rDNA, and plastid rbcL,atpB, and matK sequences. Am J
Bot 89:132–144.
Doyle JJ, JL Doyle 1987 A rapid DNA isolation procedure for small
quantities of fresh leaf tissue. Phytochem Bull 19:11–15.
Edwards GE, V Franceschi, EV Voznesenskaya 2004 Single-cell C
4
photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev
Plant Biol 55:173–196.
Felsenstein J 1985 Confidence limits on phylogenies: an approach
using the bootstrap. Evolution 39:783–791.
Fenzl E 1851 Salsolaceae. Pages 689–854 in CF Ledebour, ed. Flora
Rossica. Vol 3. Schweizerbart, Stuttgart.
Freitag H 1997 Salsola L. (Chenopodiaceae). Pages 154–255 in KH
Rechinger, ed. Flora Iranica. Vol 172. Akademische Druck und
Verlagsanstalt, Graz. (With a contribution from S. Rilke.)
Freitag H, W Stichler 2000 A remarkable new leaf type with unusual
photosynthetic tissue in a central Asiatic genus of Chenopodiaceae.
Plant Biol 2:154–160.
——— 2002 Bienertia cycloptera Bunge ex Boiss., Chenopodiaceae,
another C
4
plant without Kranz tissues. Plant Biol 4:121–132.
Galushko A 1976 Taxa nova, 2. Nov Syst Vyss Rast 13:250–255.
Gamaley YV, EV Voznesenskaya 1986 Structural-biochemical types
of C-4 plants. Sov Plant Physiol 33:616–630.
Ghobadnejhad M, MR Joharchi, H Akhani 2004 Notes on the flora
of Iran. 5. Halimocnemis longifolia (Chenopodiaceae), a new
record from Iran. Linz Biol Beitr 36:1309–1316.
Hedge IC 1997 Seidlitzia to Halogeton (Chenopodiaceae). Pages
290–357 in KH Rechinger, ed. Flora Iranica. Vol 172. Akademische
Druck und Verlagsanstalt, Graz.
Hedge IC, H Akhani, H Freitag, G Kothe-Heinrich, D Podlech,
S Rilke, P Uotila 1997 Chenopodiaceae. Pages 1–370 + 212 tables
in KH Rechinger, ed. Flora Iranica. Vol 172. Akademische Druck
und Verlagsanstalt, Graz.
Hillis DM, JJ Bull 1993 An empirical test of bootstrapping as a
method for assessing confidence in phylogenetic analysis. Syst Biol
42:182–192.
Iljin MM 1936 Chenopodiaceae. Pages 2–354 in BK Siskin, ed.
Flora SSSR. Vol 6. Izdatel’stvo Akademii Nauk SSSR, Leningrad. (In
Russian.)
——— 1948 Novi rod Hammada Iljin. Bot Zhurn 33:582–583.
——— 1949 Revisio specierum generis Halocharis Moq.-Tand. Bot
Mat Gerb Bot Inst Komarov Acad Nauk SSSR 11:74–81.
——— 1954 De genere Seidlitzia Bge. Notae criticae. Bot Mat Gerb
Bot Inst Komarov Akad Nauk SSSR 16:86–93.
Jacobs SWL 2001 Review of leaf anatomy and ultrastructure in
the Chenopodiaceae (Caryophyllales). J Torrey Bot Soc 128:
236–253.
Jarvis CE, FR Barrie, DM Allan, JL Reveal 1993 A list of Linnean
generic names and their types. Koeltz Scientific, Ko
¨nigstein.
Johnson LA, DE Soltis 1995 Phylogenetic inference in Saxifragaceae
sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann
Mo Bot Gard 82:149–175.
Kadereit G, T Borsch, K Weising, H Freitag 2003 Phylogeny of
Amaranthaceae and Chenopodiaceae and the evolution of C
4
photosynthesis. Int J Plant Sci 164:959–986.
Kadereit G, D Gotzek, S Jacobs, H Freitag 2005 Origin and age of
Australian Chenopodiaceae. Origin Divers Evol 5:59–80.
Kadereit G, L Mucina, H Freitag 2006 Phylogeny of Salicornioideae
(Chenopodiaceae): diversification, biogeography, and evolutionary
trends in leaf and flower morphology. Taxon 55:617–642.
Kapralov M, H Akhani, EV Voznesenskaya, G Edwards, V
Franceschi, EH Roalson 2006 Phylogenetic relationships in the
Salicornioideae/Suaedoideae/Salsoloideae s.l. (Chenopodiaceae)
clade and a clarification of the phylogenetic position of Bienertia
and Alexandra using multiple DNA sequence datasets. Syst Bot 31:
571–585.
Korovin E, A Mironov 1935 Review of the genus Arthrophytum
Schrenk and the position of that genus in the system. Acta Univ
Asiae Med Ser 7b 29:1–23.
Kothe-Heinrich G 1993 Revision der Gattung Halothamnus (Che-
nopodiaceae). Bibliotheca Botanica 143. Schweizerbart, Stuttgart.
Ku
¨hn U, V Bittrich, R Carolin, H Freitag, IC Hedge, P Uotila, PG
Wilson 1993 Chenopodiaceae. Pages 253–281 in K Kubitzki, ed.
955
AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l.
The families and genera of vascular plants. Vol 2. Flowering plants:
dicotyledons. Springer, Berlin.
Le
´onard J 1991 Contribution a l’etude de la flore et de la vegetation
des deserts d’Iran. Vol 10. Jardin Botanique National de Belgique,
Meise.
Meyer CA 1829 Generae Chenopodearum. Pages 370–371 in CF
Ledebour, ed. Flora Altaica. Vol 1. Reimer, Berlin.
Miller P 1754 The gardeners dictionary. Vol 2. Rivington, London.
Minin V, Z Abdo, P Joyce, J Sullivan 2003 Performance-based
selection of likelihood models for phylogeny estimation. Syst Biol
52:674–683.
Moquin-Tandon A 1840 Chenopodearum monographica enumera-
tio. Loss, Paris. 182 pp.
——— 1849 Salsolaceae. Pages 41–219 in AP de Candolle, ed. Pro-
dromus systematis naturalis regni vegetabilis. Vol 13, pt 2. Masson,
Paris.
Mu
¨ller K, T Borsch 2005 Phylogenetics of Amaranthaceae using
matK/trnK sequence data: evidence from parsimony, likelihood and
Bayesian approaches. Ann Mo Bot Gard 92:66–102.
Pratov UP 1975 The second species of the genus Nanophyton Less.
(Chenopodiaceae). Bot Zhurn 60:1161. (In Russian.)
——— 1982 New species of the genus Nanophyton (Chenopodia-
ceae). Bot Zhurn 67:1525–1528. (In Russian.)
——— 1985 Obzor roda Nanophyton Less. (Chenopodiaceae).
(Revisio generis Nanophyton Less. (Chenopodiaceae). Nov Sist
Vys Rast 22:81–88.
——— 1986 Rod Climacoptera Botsch.: sistematuka, geografiya,
filogeniya i voprocy okhrany. Izdatel’stvo Fan Uzbekskoi, Tashkent.
65 pp.
Pratt D 2003 ndhF phylogeny of the Chenopodiaceae-Amarantha-
ceae-alliance. PhD diss. Iowa State University, Ames.
Pyankov VI, EG Artyusheva, GE Edwards, CC Black Jr, PS
Soltis 2001aPhylogenetic analysis of tribe Salsoleae (Chenopodia-
ceae) based on ribosomal ITS sequences: implications for the
evolution of photosynthetic types. Am J Bot 88:1189–1198.
Pyankov VI, CC Black Jr, E Artyusheva, EV Voznesenskaya, MSB Ku,
GE Edwards 1999 Features of photosynthesis in Haloxylon species
of Chenopodiaeceae that are dominant plants in Central Asian
deserts. Plant Cell Physiol 40:125–134.
Pyankov VI, CC Black Jr, W Stichler, H Ziegler 2002 Photosynthesis
in Salsola species (Chenopodiaceae) from southern Africa relative to
their C
4
syndrome origin and their African-Asian arid zone
migration pathways. Plant Biol 4:62–69.
Pyankov VI, AN Kuz’min, E
´D Demidov, AI Maslov 1992 Diversity
of biochemical pathways of CO
2
fixation in plants of the families
Poaceae and Chenopodiaceae from the arid zones of Central Asia.
Fiziol Rast 39:645–657.
Pyankov VI, DV Vakhrusheva 1989 Pathways of primary CO
2
fixation in C
4
plants of the family Chenopodiaceae from the arid
zone of Central Asia. Fiziol Rast 36:228–238.
Pyankov VI, EV Voznesenskaya, AV Kondratschuk, CC Black
Jr 1997 A comparative anatomical and biochemical analysis in
Salsola (Chenopodiaceae) species with and without a Kranz type
leaf anatomy: a possible reversion of C
4
to C
3
photosynthesis. Am J
Bot 84:597–606.
Pyankov VI, H Ziegler, A Kuz’min, GE Edwards 2001bOrigin and
evolution of C
4
photosynthesis in the tribe Salsoleae (Chenopodia-
ceae) based on anatomical and biochemical types in leaves and
cotyledons. Plant Syst Evol 230:43–74.
Rilke S 1999 Revision der Sektion Salsola s.l. der Gattung Salsola
(Chenopodiaceae). Bibliotheca Botanica 149:1–190.
Roalson EH, JT Columbus, EA Friar 2001 Phylogenetic relationships
in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F
(cpDNA) region sequences: assessment of subgeneric and sectional
relationships in Carex with emphasis on section Acrocystis. Syst Bot
26:318–341.
Schu
¨tze P, H Freitag, K Weising 2003 An integrated molecular and
morphological study of the subfamily Suaedioideae Ulbr. (Cheno-
podiaceae). Plant Syst Evol 239:257–286.
Scott AJ 1977aProposal to conserve the family name Salsolaceae
Moq. Taxon 26:246.
——— 1977bReinstatement and revision of Salicorniaceae J.
Agardh (Caryophyllales). Bot J Linn Soc 75:357–374.
——— 1978 A revision of the Camphorosmioideae (Chenopodia-
ceae). Fed Repert 89:101–119.
Shepherd KA, TD Macfarlane, M Waycott 2005 Phylogenetic anal-
ysis of the Australian Salicornioideae (Chenopodiaceae). Aust Syst
Bot 18:89–115.
Suh Y, LB Thien, HE Reeves, EA Zimmer 1993 Molecular evolution
and phylogenetic implications of internal transcribed spacer se-
quences of ribosomal DNA in Winteraceae. Am J Bot 80:
1042–1055.
Swofford DL 2001 PAUP*: phylogenetic analysis using parsimony
(*and other methods), version 4.0. Sinauer, Sunderland, MA.
Thompson JD, TJ Gibson, F Plewniak, F Jeanmougin, DG
Higgins 1997 The ClustalX windows interface: flexible strategies
for multiple sequence alignment aided by quality analysis tools.
Nucleic Acids Res 24:4876–4882.
Tzvelev NN 1993 Notes on Chenopodiaceae of Eastern Europe. Ukr
Bot Zhurn 50:78–85.
Ulbrich E 1934 Chenopodiaceae. Pages 379–584 in A Engler, K
Prantl, eds. Die natu
¨rlichen Pflanzenfamilien. Vol 16c. Engelmann,
Leipzig.
Volkens G 1893 Chenopodiaceae. Pages 36–91 in A Engler, K Prantl,
eds. Die natu
¨rlichen Pflanzenfamilien. Tiel 3, abt 1a. Engelmann,
Leipzig.
Voznesenskaya EV, EG Artyusheva, VR Franceschi, VI Pyankov, O Kiirats,
MSB Ku, GE Edwards 2001a Salsola arbusculiformis,aC
3
-C
4
inter-
mediate in Salsoleae (Chenopodiaceae). Ann Bot 88:337–348.
Voznesenskaya EV, VR Franceschi, O Kiirats, EG Artyusheva, H
Freitag, GE Edwards 2002 Proof of C
4
photosynthesis without
Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J
31:649–662.
Voznesenskaya EV, VR Franceschi, O Kiirats, H Freitag, GE
Edwards 2001bKranz anatomy is not essential for terrestrial C
4
plant photosynthesis. Nature 414:543–546.
Voznesenskaya EV, VR Franceschi, VI Pyankov, GE Edwards 1999
Anatomy, chloroplast structure and compartmentation of enzyme
relative to photosynthetic mechanisms in leaves and cotyledons of
species in the tribe Salsoleae (Chenopodiaceae). J Exp Bot 50:
1779–1795.
White TJ, T Bruns, S Lee, J Taylor 1990 Amplification and direct
sequencing of fungal ribosomal RNA genes for phylogenetics. Pages
315–322 in M Innis, D Gelfand, J Sninsky, T White, eds. PCR
protocols: a guide to methods and applications. Academic Press,
San Diego, CA.
Woloszczak E 1885 Salsolaceae. Pages 274–278 in O Stapf, ed. Die
Botanischen Ergibnisse der Polak’schen Expedition nach Persien in
Jahre 1882. Vol 1. Kaiserlich-Ko
¨niglich Hof- und Staatsdruckerei,
Vienna.
Xu DH, J Abe, M Sakai, A Kanazawa, Y Shimamoto 2000 Sequence
variation of non-coding regions of chloroplast DNA of soybean
and related wild species and its implications for the evolution of
different chloroplast haplotypes. Theor Appl Genet 101:724–732.
956 INTERNATIONAL JOURNAL OF PLANT SCIENCES
... Akhani et al. 2007). They are mainly succulent halophytes and xerophytes with diverse morphological, anatomical, and physiological traits (Pyankov et al. 2001;Voznesenskaya et al. 2002). ...
... They are mainly succulent halophytes and xerophytes with diverse morphological, anatomical, and physiological traits (Pyankov et al. 2001;Voznesenskaya et al. 2002). Based on phylogenetic relationships and unclear generic boundaries of Gamanthus Bunge, Halanthium K.Koch, Halotis Bunge, and Halimocnemis C.A.Mey., Akhani et al. (2007) considered recognition of all these genera within Halimocnemis s. l. which comprises 27 annual species primarily distributed in the central and eastern parts of the Irano-Turanian region, 8 of which occur in Iran (Assadi, 2001). ...
... 59°25′24.6′′E, Atashgahi & Jafari Polgerd 9732 (FUMH).Notes on distribution, habitats, and taxonomy:Halimocnemis commixta was spelled byAkhani et al. (2007) as a new combination of "H. commixtus". ...
Article
Full-text available
Halimocnemis commixta is recorded as a new species for the flora of Iran from Pistacia vera woodland remnants in NE Iran. It grows on open salty soils with several typical halophytic plants. The new species record is illustrated and compared with the closely related species. It can be distinguished from H. gamocarpa by its clustered flowers and irregularly horned fruits and differs from H. pilosa by its entirely short and adpressed hairs. We provide some additional notes on the distribution, ecology, and conservation status of the newly recorded species.
... While it is classified now as one of the Amaranthaceae genera after merging family Chenopodiaceae with the family Amaranthaceae according to the angiosperm phylogeny group (AGP-IV) 26,[28][29][30] . Plants belonging to the genus Salsola have the following taxonomic classification 27,[30][31][32] . Family: Amaranthaceae (previously, Chenopodiaceae) Subfamily: Salsoloideae Tribe: Salsoleae Genus: Salsola ...
... The taxonomy of Salsola spp. is debateable and confusing due to their diversity and distribution in the Asian and the middle east deserts that lead to difficulties in their collection and investigation 31 . The close relationship between Salsola spp. ...
... and the dependence on minor morphological differences in their old classification together with the recent use of molecular techniques in plant systematics led to major changes in the classification of the genus Salsola 27 . The classification of the genus Salsola has been revised by Akhani et al. (2007) and it was spitted into 10 different genera. The transfer of different sp. ...
Article
Salsola is an important genus in the plant kingdom with diverse traditional, industrial, and environmental applications. Salsola species are widely distributed in temperate regions and represent about 45% of desert plants. They are a rich source of diverse phytochemical classes, such as alkaloids, cardenolides, triterpenoids, coumarins, flavonoids, isoflavonoids, and phenolic acids. Salsola spp. were traditionally used as antihypertensive, anti-inflammatory, and immunostimulants. They attracted great interest from researchers as several pharmacological activities were reported, including analgesic, antipyretic, antioxidant, cytotoxic, hepatoprotective, contraceptive, antidiabetic, neuroprotective, and antimicrobial activities. Genus Salsola is one of the most notorious plant genera from the taxonomical point of view. Our study represents a comprehensive review of the previous phytochemical and biological research on the old world Salsola secies. It is designed to be a guide for future research on different plant species that still belong to this genus or have been transferred to other genera. © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
... From the taxonomic perspective, Salsola belongs to tribe Salsoleae of subfamily Salsoloideae in family Amaranthaceae [16]. It includes about 64 species (Table 1) but, due to the physical similarity between many species, this genus is generally regarded as exceedingly tough [17,18]. ...
... Constipation and indigestion are two of the most frequent ailments. Constipation affects up to 27% of the population, while indigestion affects [11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29].2% of the population [85,113]. There is growing evidence that several compounds present in medicinal plants have the ability to treat gastrointestinal diseases such as indigestion and constipation in a synergistic manner [114,115]. ...
Article
Full-text available
The genus Salsola L. (Russian thistle, Saltwort) includes halophyte plants and is considered one of the largest genera in the family Amaranthaceae. The genus involves annual semi-dwarf to dwarf shrubs and woody tree. The genus Salsola is frequently overlooked, and few people are aware of its significance. The majority of studies focus on pollen morphology and species identification. Salsola has had little research on its phytochemical makeup or biological effects. Therefore, we present this review to cover all aspects of genus Salsola, including taxonomy, distribution, differences in the chemical constituents and representative examples of isolated compounds produced by various species of genus Salsola and in relation to their several reported biological activities for use in folk medicine worldwide.
... In Madagascar, Chenopodium in a previous broad- ). Furthermore, according to an extensive phylogenetic analysis of Salsoloideae Raf. by Akhani et al. (2007), a part of Salsola is currently considered within Caroxylon Thunb.. Madagascan Salsola littoralis was not included in the phylogeny, but it shares all the principal morphological characters with other species of Caroxylon and should be regarded as C. littorale (Moq.) Akhani et Roalson (Akhani et al., 2007;Mucina, 2017 . ...
... Furthermore, according to an extensive phylogenetic analysis of Salsoloideae Raf. by Akhani et al. (2007), a part of Salsola is currently considered within Caroxylon Thunb.. Madagascan Salsola littoralis was not included in the phylogeny, but it shares all the principal morphological characters with other species of Caroxylon and should be regarded as C. littorale (Moq.) Akhani et Roalson (Akhani et al., 2007;Mucina, 2017 . Recently, C. littorale was also recorded in the coastal parts of Inhambane Province (Mozambique) as a native species (Friis, Holt, 2016). ...